高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同湍流模型对铅-铋凝固模拟的影响研究

曾陈 张蕊 刘茂龙 张伟豪 李俊龙 刘利民 刘莉 顾汉洋

曾陈, 张蕊, 刘茂龙, 张伟豪, 李俊龙, 刘利民, 刘莉, 顾汉洋. 不同湍流模型对铅-铋凝固模拟的影响研究[J]. 核动力工程, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040
引用本文: 曾陈, 张蕊, 刘茂龙, 张伟豪, 李俊龙, 刘利民, 刘莉, 顾汉洋. 不同湍流模型对铅-铋凝固模拟的影响研究[J]. 核动力工程, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040
Zeng Chen, Zhang Rui, Liu Maolong, Zhang Weihao, Li Junlong, Liu Limin, Liu Li, Gu Hanyang. Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification[J]. Nuclear Power Engineering, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040
Citation: Zeng Chen, Zhang Rui, Liu Maolong, Zhang Weihao, Li Junlong, Liu Limin, Liu Li, Gu Hanyang. Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification[J]. Nuclear Power Engineering, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040

不同湍流模型对铅-铋凝固模拟的影响研究

doi: 10.13832/j.jnpe.2023.S1.0040
详细信息
    作者简介:

    曾 陈(1995 —),男,博士研究生,能源动力专业,E-mail: zengchen@sjtu.edu.cn

    通讯作者:

    刘茂龙,E-mail: maolongliu@sjtu.edu.cn

  • 中图分类号: TL334

Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification

  • 摘要: 为了研究不同湍流模型及湍流普朗特数(Prt)模型对模拟铅-铋凝固行为的影响,利用FLUENT对铅-铋管内流动凝固行为进行模拟研究。研究结果表明,尽管剪切应力传输(k-ω SST)模型、k-ε模型与雷诺应力(RSM)模型在模拟铅-铋传热时的差异可以忽略,但在相变过程中对温度场与压力场的模拟存在显著差异,应慎重选取湍流模型。另外对不同Prt模型对铅-铋的凝固行为模拟的研究表明,不同Prt模型对铅-铋的凝固行为模拟无明显差异。

     

  • 图  1  模拟工况示意图

    Figure  1.  Schematic Diagram of Simulated Work Conditions

    图  2  k-ω SST模型网格无关性分析结果

    Figure  2.  Mesh Independence Analysis Results of k-ω SST Model    

    图  3  k-ε模型网格无关性分析结果

    Figure  3.  Mesh Independence Analysis Results of k-ε Model

    图  4  不同模型的计算结果

    Figure  4.  Simulation Results of Different Models

    图  5  不同Prt模型的计算结果

    Figure  5.  Simulation Results of Different Prt Models

    图  6  不同模型计算得到固-液界面信息

    Figure  6.  Solid-Liquid Interface Location Calculated By Different Models

    图  7  k-ω SST模型计算得到的固相线与液相线分布

    Figure  7.  Distribution of Solidus And Liquidus Lines Calculated by k-ω SST Model

    表  1  不同湍流模型计算结果对比

    Table  1.   Comparison of Results of Different Turbulence Models

    模型进出口压降 /Pa出口平均温度 /K
    RSM1443.8405.6
    k-ω SST3033.5407.4
    k-ε Standard18683.8405.3
    k-ε RNG14149.0406.2
    k-ε9144.4405.3
    下载: 导出CSV

    表  2  不同湍流Pr模型计算结果对比

    Table  2.   Comparison of Results of Different Prt Models

    模型进出口压降 /Pa出口平均温度 /K
    k-ω SST3033.5407.4
    k-ω SST + Prt_Aoki2396.6407.3
    k-ω SST +Prt_CT2395.3407.3
    k-ω SST + Prt_JR2396.8407.3
    k-ω SST + Prt_Reynolds2396.3407.3
    k-ω SST + Prt_Kays2394.6407.3
    下载: 导出CSV
  • [1] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [2] WANG G, NIU S Q, CAO R F. Summary of severe accident issues of LBE-cooled reactors[J]. Annals of Nuclear Energy, 2018, 121: 531-539. doi: 10.1016/j.anucene.2018.08.015
    [3] LE BRUN N, HEWITT G F, MARKIDES C N. Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS)[J]. Applied Energy, 2017, 186: 56-67. doi: 10.1016/j.apenergy.2016.09.099
    [4] ACHUTHAN N, MELICHAR T, PROFIR M, et al. Computational fluid dynamics modelling of lead natural convection and solidification in a pool type geometry[J]. Nuclear Engineering and Design, 2021, 376: 111104. doi: 10.1016/j.nucengdes.2021.111104
    [5] TARANTINO M, ROELOFS F, SHAMS A, et al. SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations[J]. EPJ Nuclear Sciences & Technologies, 2020, 6: 18.
    [6] KÖNIG-HAAGEN A, FRANQUET E, PERNOT E, et al. A comprehensive benchmark of fixed-grid methods for the modeling of melting[J]. International Journal of Thermal Sciences, 2017, 118: 69-103. doi: 10.1016/j.ijthermalsci.2017.04.008
    [7] VOLLER V R, SWAMINATHAN C R, THOMAS B G. Fixed grid techniques for phase change problems: a review[J]. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875-898. doi: 10.1002/nme.1620300419
    [8] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
    [9] BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170. doi: 10.1016/0017-9310(87)90094-9
    [10] BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—II. Application to solidification in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2171-2187. doi: 10.1016/0017-9310(87)90095-0
    [11] CARMAN P C. Fluid flow through granular beds[J]. Transactions of the Institution of Chemical Engineers, 1937, 15: 150-166.
    [12] MA Z H, ZHANG Y W. Solid velocity correction schemes for a temperature transforming model for convection phase change[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2006, 16(2): 204-225.
    [13] ROSE M E. A method for calculating solutions of parabolic equations with a free boundary[J]. Mathematics of Computation, 1960, 14(71): 249-256. doi: 10.1090/S0025-5718-1960-0115283-8
    [14] VOLLER V R. An overview of numerical methods for solving phase change problems[M]//MINKOWYCZ W J, SPARROW E W. Advanced in Numerical Heat Transfer. Washington: Taylor & Francis, 1997: 341-380.
    [15] Organisation for Economic Co-Operation and Development. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition: No. NEA-7268[R]. Paris: Organisation for Economic Co-Operation and Development, 2015.
    [16] LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  21
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-03-27
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回