高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋十字型燃料棒中子物理及热工水力性能分析

张涛 韩文斌 申鹏飞 黄善仿 王侃

张涛, 韩文斌, 申鹏飞, 黄善仿, 王侃. 螺旋十字型燃料棒中子物理及热工水力性能分析[J]. 核动力工程, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069
引用本文: 张涛, 韩文斌, 申鹏飞, 黄善仿, 王侃. 螺旋十字型燃料棒中子物理及热工水力性能分析[J]. 核动力工程, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069
Zhang Tao, Han Wenbin, Shen Pengfei, Huang Shanfang, Wang Kan. Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069
Citation: Zhang Tao, Han Wenbin, Shen Pengfei, Huang Shanfang, Wang Kan. Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069

螺旋十字型燃料棒中子物理及热工水力性能分析

doi: 10.13832/j.jnpe.2023.S1.0069
详细信息
    作者简介:

    张 涛(2000—),男,硕士研究生,现主要从事核能科学与工程方面研究,E-mail: tao-zhan18@tsinghua.org.cn

  • 中图分类号: TL334

Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods

  • 摘要: 为分析螺旋十字型燃料棒的中子物理及热工水力性能,使用基于计算机辅助设计(CAD)几何的反应堆蒙特卡罗程序RMC和商用计算流体力学(CFD)软件Fluent对螺旋十字型燃料棒进行数值模拟,并与传统圆柱型和无扭转十字型燃料棒进行对比。结果表明,螺旋十字型结构会略微降低反应性,增大径向功率峰因子;相较于圆柱型燃料棒,螺旋十字型燃料棒由于存在横向流动,能增强冷却剂交混,提升换热能力,在七棒束组件计算中,螺旋十字型燃料棒的平均温度和峰值温度都降低了约4 K。

     

  • 图  1  螺旋十字型燃料棒模型

    r—外凸圆半径;RE—内凹圆半径;δ—包壳厚度;L—过渡长度

    Figure  1.  Model of Helical Cruciform Fuel Rod

    图  2  二维单栅元模型

    Figure  2.  Two-dimensional Single Cell Model

    图  3  中子能谱

    Figure  3.  Neutron Energy Spectrum

    图  4  几何结构与网格划分

    Figure  4.  Geometry and Grid

    图  5  网格无关性验证

    Figure  5.  Grid Independence Validation

    图  6  出口截面速度切线投影矢量图

    Figure  6.  Velocity Tangent Projection Vector Diagram for Outlet       

    图  7  壁面温度沿周向分布

    Figure  7.  Circumferential Distribution of Wall Temperature

    图  8  中心温度沿轴向分布

    Figure  8.  Axial Distribution of Central Temperature

    表  1  CSG、CAD建模的计算结果对比

    Table  1.   Comparison of Results between CSG and CAD Model      

    建模方式有效增殖系数(keff
    CSG1.308667±0.000148
    CAD1.308611±0.000144
    下载: 导出CSV

    表  2  二维临界计算结果

    Table  2.   Two-dimensional Critical Calculation Results

    截面类型文献[9]计算
    keffdk/kkeffdk/k
    圆型1.35131.3874±0.0001
    十字型1.3456−0.00431.3843±0.0001−0.0022
    十字型45°1.3486−0.00201.3856±0.0001−0.0013
      dk/k—其他截面相对于圆型截面keff的相对误差
    下载: 导出CSV

    表  3  三维临界计算结果

    Table  3.   Three-dimensional Critical Calculation Results

    单栅元模型keff
    圆柱型1.313672±0.000144
    十字型1.308667±0.000148
    螺旋十字型螺距50 cm1.308946±0.000153
    螺距100 cm1.308981±0.000149
    下载: 导出CSV

    表  4  功率峰因子对比

    Table  4.   Power Peaking Factor Comparison

    截面类型轴向功率峰因子整体功率峰因子
    圆柱型1.501.81
    十字型1.492.00
    螺旋十字型1.492.08
    下载: 导出CSV

    表  5  流动参数对比

    Table  5.   Comparison of Flow Parameters

    物理量圆柱型十字型螺旋十字型
    $ {\bar V_{\text{R}}}/({\text{m}} \cdot {{\text{s}}^{ - 1}}) $0.001480.001510.02492
    $ {{\Delta }}P{\text{/Pa}} $974.38993.431087.02
    下载: 导出CSV
  • [1] 邢继,高力,霍小东,等. “碳达峰、碳中和”背景下核能利用浅析[J]. 核科学与工程,2022, 42(1): 10-17. doi: 10.3969/j.issn.0258-0918.2022.01.002
    [2] DIAKOV A C, DMITRIEV A M, KANG J, et al. Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel[J]. Science & Global Security, 2006, 14(1): 33-48.
    [3] AGEENKOV V I, VOLKOV V S, SOLONIN M I, et al. Parameters and technology for fabricating PIK reactor fuel elements[J]. Atomic Energy, 2002, 92(6): 468-474. doi: 10.1023/A:1020262131193
    [4] BOL’SHAKOV V V, BASHKIRTSEV S M, KOBZAR’ L L, et al. Experimental study of burnout in channels with twisted fuel rods[J]. Thermal Engineering, 2007, 54(5): 386-389. doi: 10.1134/S0040601507050096
    [5] CONBOY T M. Assessment of helical-cruciform fuel rods for high power density LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2010.
    [6] ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
    [7] SHIRVAN K, KAZIMI M S. Nuclear design of helical cruciform fuel rods[C]//PHYSOR 2012–Advances in Reactor Physics–Linking Research, Industry, and Education. Knoxville: American Nuclear Society, 2012.
    [8] SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015
    [9] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
    [10] 刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [11] FANG Y L, QIN H, WANG C L, et al. Numerical investigation on thermohydraulic performance of high temperature hydrogen in twisted rod channels[J]. Annals of Nuclear Energy, 2021, 161: 108434. doi: 10.1016/j.anucene.2021.108434
    [12] HARTMANN C, TOTEMEIER A, HOLCOMBE S, et al. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden boiling water reactor[J]. EPJ Web of Conferences, 2018, 170: 04011. doi: 10.1051/epjconf/201817004011
    [13] University of Wisconsin–Madison. DAGMC: direct accelerated geometry Monte Carlo[EB/OL]. (2021-07-08)[2022-05-05]. https://svalinn.github.io/DAGMC.
    [14] LOVECKÝ M, ZÁVORKA J, VIMPEL J. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6[J]. Kerntechnik, 2019, 84(4): 262-266. doi: 10.3139/124.190041
    [15] WU Y C, SONG J, ZHENG H Q, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. doi: 10.1016/j.anucene.2014.08.058
    [16] TALAMO A, GOHAR Y, LEPPÄNEN J. SERPENT validation and optimization with mesh adaptive search on stereolithography geometry models[J]. Annals of Nuclear Energy, 2018, 115: 619-632. doi: 10.1016/j.anucene.2018.01.012
    [17] WANG K, LI Z G, SHE D, et al. RMC–a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [18] SHEN P F, LIANG J G, LIU S C, et al. Implementation and verification of the DAGMC module in Monte Carlo code RMC[C]//Proceedings of the 29th International Conference on Nuclear Engineering. New York: American Society of Mechanical Engineers, 2022.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  110
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-05-24
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回