高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卡轴事故下事故容错燃料对核反应堆安全潜在影响分析

吴和鑫 金德升 苟军利 单建强 程毅

吴和鑫, 金德升, 苟军利, 单建强, 程毅. 卡轴事故下事故容错燃料对核反应堆安全潜在影响分析[J]. 核动力工程, 2023, 44(S1): 75-80. doi: 10.13832/j.jnpe.2023.S1.0075
引用本文: 吴和鑫, 金德升, 苟军利, 单建强, 程毅. 卡轴事故下事故容错燃料对核反应堆安全潜在影响分析[J]. 核动力工程, 2023, 44(S1): 75-80. doi: 10.13832/j.jnpe.2023.S1.0075
Wu Hexin, Jin Desheng, Gou Junli, Shan Jianqiang, Cheng Yi. Analysis of Potential Impact of ATFs on Reactor Safety under Shaft-Stuck Accident[J]. Nuclear Power Engineering, 2023, 44(S1): 75-80. doi: 10.13832/j.jnpe.2023.S1.0075
Citation: Wu Hexin, Jin Desheng, Gou Junli, Shan Jianqiang, Cheng Yi. Analysis of Potential Impact of ATFs on Reactor Safety under Shaft-Stuck Accident[J]. Nuclear Power Engineering, 2023, 44(S1): 75-80. doi: 10.13832/j.jnpe.2023.S1.0075

卡轴事故下事故容错燃料对核反应堆安全潜在影响分析

doi: 10.13832/j.jnpe.2023.S1.0075
详细信息
    作者简介:

    吴和鑫(1996—),男,博士研究生,现从事反应堆运行安全方面的研究工作,E-mail: blanket@stu.xjtu.edu.cn

  • 中图分类号: TL33

Analysis of Potential Impact of ATFs on Reactor Safety under Shaft-Stuck Accident

  • 摘要: 为分析卡轴工况下事故容错燃料(ATF)对反应堆安全的潜在影响,以中国改进型三环路压水堆(CPR1000)为参考电站,基于系统分析程序NUSOL-SYS进行了二次开发,研究了不同ATF组合在卡轴工况下的表现,并对ATF包壳表面特性变化可能引起的换热系数和临界热流密度(CHF)变化开展了敏感性分析。分析结果表明,在卡轴工况下,ATF包壳表面特性变化导致的换热系数和CHF变化会对芯块最高温度和包壳峰值温度(PCT)产生较大影响,热导率大的ATF芯块能极大地降低芯块温度,比热容大的ATF材料能降低PCT。

     

  • 图  1  卡轴事故下不同ATF的热点芯块温度

    Figure  1.  Hot Spot Pellet Temperature of Different ATFs under Shaft-Stuck Accident

    图  2  卡轴事故下不同ATF的包壳最高温度

    Figure  2.  Peak Cladding Temperature of Different ATFs under Shaft-Stuck Accident

    图  3  卡轴事故下不同燃料组合归一化芯块最高温度

    Figure  3.  Normalized Maximum Pe llet Temperature of Different Fuel Combinations under Shaft-Stuck Accident

    图  4  卡轴事故下不同燃料组合归一化PCT

    Figure  4.  Normalized Peak Cladding Temperature of Different Fuel Combinations under Pump Shaft-Stuck Acciden

    表  1  CPR1000卡轴事故基本假设条件

    Table  1.   Basic Assumption of CPR1000 Pump Shaft-Stuck Accident

    参数名参数值
    功率/MW2953
    一回路压力/MPa15.29
    热点因子2.25
    功率分布形式顶部功率峰
    停堆棒价值/pcm4000
    流量低信号85.8%名义流量
      1pcm=10−5
    下载: 导出CSV

    表  2  CPR1000卡轴事故序列

    Table  2.   Shaft-Stuck Accident Sequence of CPR1000

    事故序列触发时间/s
    泵235转轴卡死0
    低流量触发停堆信号0.04
    控制棒开始下落1.05
    汽轮机脱扣5.05
    下载: 导出CSV

    表  3  卡轴事故下不同ATF主要参数对比

    Table  3.   Key Paramaters of Different ATFs under Pump Shaft-Stuck Accident

    芯块+包壳燃料组合芯块最高温度/℃PCT/℃热点氧化产热/W气隙压力/MPa
    UO2+Zr2183.13868.55326.548126.32197
    UO2+SiC2112.89873.461.722876.31983
    UO2+FeCrAl2181.42869.250.012076.32258
    FCM+Zr1095.15832.38272.389106.31787
    FCM+SiC1076.18837.381.320346.31615
    FCM+FeCrAl1094.83832.670.007886.31882
    UO2(+13.6% BeO)+Zr1278.63824.70234.963216.32043
    UO2(+13.6% BeO)+SiC1242.04824.881.030706.31781
    UO2(+13.6% BeO)+FeCrAl1277.66824.840.006296.31922
    下载: 导出CSV
  • [1] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052
    [2] LIU R, ZHOU W, SHEN P, et al. Fully coupled multiphysics modeling of enhanced thermal conductivity UO2-BeO fuel performance in a light water reactor[J]. Nuclear Engineering and Design, 2015, 295: 511-523. doi: 10.1016/j.nucengdes.2015.10.019
    [3] LATTA R, REVANKAR S T, SOLOMON A A. Modeling and measurement of thermal properties of ceramic composite fuel for light water reactors[J]. Heat Transfer Engineering, 2008, 29(4): 357-365. doi: 10.1080/01457630701825390
    [4] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
    [5] WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
    [6] WU X L, LI W, WANG Y, et al. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions[J]. Annals of Nuclear Energy, 2015, 80: 1-13.
    [7] PAN D, ZHANG R Q, WANG H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J]. Journal of Alloys and Compounds, 2016, 684: 549-555. doi: 10.1016/j.jallcom.2016.05.145
    [8] LI B S. Pellet Cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions[D]. South Carolina: Univ. of South Carolina, 2013.
    [9] LEE S K, LIU M L, BROWN N R, et al. Comparison of steady and transient flow boiling critical heat flux for FeCrAl accident tolerant fuel cladding alloy, Zircaloy, and Inconel[J]. International Journal of Heat and Mass Transfer, 2019, 132: 643-654. doi: 10.1016/j.ijheatmasstransfer.2018.11.141
    [10] SEO G H, JEUN G, KIM S J. Pool boiling heat transfer characteristics of zircaloy and SiC claddings in deionized water at low pressure[J]. Experimental Thermal and Fluid Science, 2015, 64: 42-53. doi: 10.1016/j.expthermflusci.2015.01.017
    [11] 吴清,卢毅力. 秦山核电二期工程瞬态事故分析[J]. 核动力工程,2003, 24(S2): 56-60.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  60
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2023-03-28
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回