高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒束通道防腐蚀特性数值研究

王苏豪 李莹 岳倪娜 郭靓 肖辉 娄芮凡 卓文彬

王苏豪, 李莹, 岳倪娜, 郭靓, 肖辉, 娄芮凡, 卓文彬. 棒束通道防腐蚀特性数值研究[J]. 核动力工程, 2023, 44(S1): 88-94. doi: 10.13832/j.jnpe.2023.S1.0088
引用本文: 王苏豪, 李莹, 岳倪娜, 郭靓, 肖辉, 娄芮凡, 卓文彬. 棒束通道防腐蚀特性数值研究[J]. 核动力工程, 2023, 44(S1): 88-94. doi: 10.13832/j.jnpe.2023.S1.0088
Wang Suhao, Li Ying, Yue Nina, Guo Liang, Xiao Hui, Lou Ruifan, Zhuo Wenbin. Numerical Research on Anti-corrosion Properties of Rod Bundle Channel[J]. Nuclear Power Engineering, 2023, 44(S1): 88-94. doi: 10.13832/j.jnpe.2023.S1.0088
Citation: Wang Suhao, Li Ying, Yue Nina, Guo Liang, Xiao Hui, Lou Ruifan, Zhuo Wenbin. Numerical Research on Anti-corrosion Properties of Rod Bundle Channel[J]. Nuclear Power Engineering, 2023, 44(S1): 88-94. doi: 10.13832/j.jnpe.2023.S1.0088

棒束通道防腐蚀特性数值研究

doi: 10.13832/j.jnpe.2023.S1.0088
基金项目: 四川省自然科学基金(青年基金)(2023NSFSC1314)
详细信息
    作者简介:

    王苏豪(1988—),男,博士研究生,现主要从事反应堆热工水力方面的研究,E-mail: shwang_npic@163.com

  • 中图分类号: TL334

Numerical Research on Anti-corrosion Properties of Rod Bundle Channel

  • 摘要: 为获得先进反应堆中燃料组件通道表面防腐蚀层的生成情况,以对反应堆运行策略分析提供支撑,本文提出了一套棒束通道中氧输运分析计算模型,结合计算流体动力学方法,对燃料组件典型19棒束通道内的防腐蚀层生成情况进行了分析。获得了棒束通道内的流场、温度场以及两种入口氧浓度、三种运行时间下的棒束氧浓度分布情况以及棒束表面防腐蚀层的生成情况。研究结果表明,棒束通道中防腐蚀层的生成主要与温度、初始氧浓度以及运行时间有关,对于现有模型来说,定距条与棒接触点附近是防腐蚀层难以形成的主要区域,需要重点关注。本文的计算方法及结果将对反应堆运行策略评价提供支撑。

     

  • 图  1  计算模型三维示意图

    Figure  1.  3D Schematic Diagram of Calculation Model

    图  2  棒束模型出口处网格示意图

    Figure  2.  Mesh of Rod Bundle Model Outlet

    图  3  发热段不同轴向截面速度云图

    Figure  3.  Velocity Contour of Different Axial Heat Section

    图  4  发热段不同轴向截面温度云图

    Figure  4.  Temperature Contour of Different Axial Heat Section         

    图  5  入口氧浓度随运行时长变化规律

    Figure  5.  Variation of Inlet Oxygen Concentration with Operation Time

    图  6  轴向截面上的氧浓度分布(入口氧浓度8×10−9wt%,运行时间60 s)

    Figure  6.  Oxygen Concentration Distribution on Axial Section (Inlet Oxygen Concentraion: 8×10−9wt%, Operation Time: 60 s)

    图  7  轴向截面上的氧浓度分布(入口氧浓度8×10−9wt%,运行时间24 h)

    Figure  7.  Oxygen Concentration Distribution on Axial Section (Inlet Oxygen Concentraion: 8×10−9wt%, Operation Time: 24 h)

    图  8  轴向截面上的氧浓度分布(入口氧浓度2×10−8wt%,运行时间60 s)

    Figure  8.  Oxygen Concentration Distribution on Axial Section (Inlet Oxygen Concentraion: 2×10−8wt%, Operation Time: 60 s)

    图  9  轴向截面上的氧浓度分布(入口氧浓度2×10−8wt%,运行时间24 h)

    Figure  9.  Oxygen Concentration Distribution on Axial Section (Inlet Oxygen Concentraion: 2×10−8wt%, Operation Time: 24 h

    图  10  定距条与壁面接触点的氧浓度分布(入口氧浓度8×10−9wt%,运行时间24 h)

    Figure  10.  Oxygen Concentration Distribution at Contact Point between Spacer and Wall (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 24 h)

    图  11  中心元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间60 s)

    Figure  11.  Oxide Layer Formation on Central Fuel Rod Wall (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 60 s)

    图  12  角通道附近元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间60 s)

    Figure  12.  Oxide Layer Formation on Fuel Rod Wall near Corner Channels (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 60 s)

    图  13  中心元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间10 min)

    Figure  13.  Oxide Layer Formation on Central Fuel Rod Wall (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 10 min)

    图  14  角通道附近元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间10 min)

    Figure  14.  Oxide Layer Formation on Fuel Rod Wall near Corner Channels (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 10 min)

    图  15  中心元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间10 min)

    Figure  15.  Oxide Layer Formation on Central Fuel Rod Wall(Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 10 min)

    图  16  角通道附近元件棒壁面氧化层生成情况(入口氧浓度8×10−9wt%,运行时间24 h)

    Figure  16.  Oxide Layer Formation on Fuel Rod Wall near Corner Channels (Inlet Oxygen Concentration: 8×10−9wt%, Operation Time: 24 h)

    图  17  中心元件棒壁面氧化层生成情况(入口氧浓度2×10−8wt%,运行时间60 s)

    Figure  17.  Oxide Layer Formation on Central Fuel Rod Wall (Inlet Oxygen Concentration: 2×10−8wt%, Operation Time: 60 s)

    图  18  角通道附近元件棒壁面氧化层生成情况(入口氧浓度2×10−8wt%,运行时间60 s)

    Figure  18.  Oxide Layer Formation on Fuel Rod Wall near Corner Channels (Inlet Oxygen Concentration: 2×10−8wt%, Operation Time: 60 s)

    图  19  中心元件棒壁面氧化层生成情况(入口氧浓度2×10−8wt%,运行时间10 min)

    Figure  19.  Oxide Layer Formation on Central Fuel Rod Wall (Inlet Oxygen Concentration: 2×10−8wt%, Operation Time: 10 min)

    图  20  角通道附近壁面氧化层生成情况(入口氧浓度2×10−8wt%,运行时间10 min)

    Figure  20.  Oxide Layer Formation on Fuel Rod Wall near Corner Channels (Inlet Oxygen Concentration: 2×10−8wt%, Operation Time: 10 min)

    图  21  中心元件棒壁面氧化层生成情况(入口氧浓度2×10−8wt%,运行时间24 h)

    Figure  21.  Oxide Layer Formation on Central Fuel Rod Wall (Inlet Oxygen Concentration: 2×10−8wt%, Operation Time: 24 h)

    表  1  棒束计算模型参数

    Table  1.   Parameters of Rod Bundle Calculation Model

    几何参数数值
    棒束数量19
    棒束外径/mm8.2
    组件盒壁面间距/mm10.49
    棒束节距/mm10.58
    加热段长度/mm870
    下载: 导出CSV
  • [1] GROMOV B F, BELOMITCEV Y S, YEFIMOV E I, et al. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems[J]. Nuclear Engineering and Design, 1997, 173(1-3): 207-217. doi: 10.1016/S0029-5493(97)00110-6
    [2] ZHANG J S, LI N, CHEN Y. Oxygen control technique in molten lead and lead-bismuth eutectic systems[J]. Nuclear Science and Engineering, 2006, 154(2): 223-232. doi: 10.13182/NSE06-A2628
    [3] LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
    [4] AÏT ABDERRAHIM H. Multi-purpose hybrid research reactor for high-tech applications a multipurpose fast spectrum research reactor[J]. International Journal of Energy Research, 2012, 36(15): 1331-1337. doi: 10.1002/er.1891
    [5] ADHI P M, OKUBO N, KOMATSU A, et al. Electrochemical impedance analysis on solid electrolyte oxygen sensor with gas and liquid reference electrodes for liquid LBE[J]. Energy Procedia, 2017, 131: 420-427. doi: 10.1016/j.egypro.2017.09.472
    [6] WEISENBURGER A, MANSANI L, SCHUMACHER G, et al. Oxygen for protective oxide scale formation on pins and structural material surfaces in lead-alloy cooled reactors[J]. Nuclear Engineering and Design, 2014, 273: 584-594. doi: 10.1016/j.nucengdes.2014.03.043
    [7] MIKITYUK K. Analytical model of the oxide layer build-up in complex lead-cooled systems[J]. Nuclear Engineering and Design, 2010, 240(10): 3632-3637. doi: 10.1016/j.nucengdes.2010.07.005
    [8] ZHANG J S, NING L. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [9] ZHANG J S, NING L, CHEN Y T. Dynamics of high-temperature oxidation accompanied by scale removal and implications for technological applications[J]. Journal of Nuclear Materials, 2005, 342(1-3): 1-7. doi: 10.1016/j.jnucmat.2005.03.003
    [10] OECD, Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD, 2015
    [11] MARINO A. Numerical modeling of oxygen mass transfer in the MYRRHA system[D]. Brussels: Vrije Universiteit Brussel, 2015.
    [12] AERTS A, GLADINEZ K, PRIETO B G, et al. The LBE coolant chemistry R&D programme for the MYRRHA ADS: chemistry and control of oxygen, corrosion and spallation products[C]//Proceedings of the 14th International Workshop on Spallation Materials Technology. JPS, 2020
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  19
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-05-30
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回