高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFETR COOL包层热-机械性能研究

蒋科成 余毅 马学斌 陈磊 刘松林

蒋科成, 余毅, 马学斌, 陈磊, 刘松林. CFETR COOL包层热-机械性能研究[J]. 核动力工程, 2023, 44(S1): 101-107. doi: 10.13832/j.jnpe.2023.S1.0101
引用本文: 蒋科成, 余毅, 马学斌, 陈磊, 刘松林. CFETR COOL包层热-机械性能研究[J]. 核动力工程, 2023, 44(S1): 101-107. doi: 10.13832/j.jnpe.2023.S1.0101
Jiang Kecheng, Yu Yi, Ma Xuebin, Chen Lei, Liu Songlin. Thermal-mechanic Analysis on COOL Blanket for CFETR[J]. Nuclear Power Engineering, 2023, 44(S1): 101-107. doi: 10.13832/j.jnpe.2023.S1.0101
Citation: Jiang Kecheng, Yu Yi, Ma Xuebin, Chen Lei, Liu Songlin. Thermal-mechanic Analysis on COOL Blanket for CFETR[J]. Nuclear Power Engineering, 2023, 44(S1): 101-107. doi: 10.13832/j.jnpe.2023.S1.0101

CFETR COOL包层热-机械性能研究

doi: 10.13832/j.jnpe.2023.S1.0101
基金项目: 国家自然科学基金项目(12205330)
详细信息
    作者简介:

    蒋科成(1993—),男,副研究员,现主要从事聚变堆包层设计及性能分析方面的研究,E-mail: jiangkecheng@ipp.ac.cn

  • 中图分类号: TL334

Thermal-mechanic Analysis on COOL Blanket for CFETR

  • 摘要: 超临界二氧化碳(sCO2)液态锂铅包层(COOL)是中国聚变工程实验堆(CFETR)的候选包层,其主要功能是增殖产氚、屏蔽中子辐射以及能量转换发电。COOL包层在正常运行工况下需要承受冷却剂压力、热应力、重力、电磁力等载荷。本文在不考虑重力和电磁载荷的情况下,采用ANSYS有限元方法对COOL包层扇段的赤道面外包层模块进行热-机械性能分析,结果表明,COOL包层在正常运行工况下,各类材料的最高温度不超过限值,并且结构应力能够满足ITER SDC-IC设计标准,分析结果可为包层优化设计提供重要参考和数据支撑。

     

  • 图  1  CFETR及包层扇段模型

    Figure  1.  CFETR and Blanket Segment Model

    图  2  COOL包层香蕉型设计

    Figure  2.  Banana Shaped Design of COOL Blanket

    图  3  核热密度沿径向分布

    Figure  3.  Radial Distribution of Nuclear Thermal Density

    图  4  赤道面外包层模块网格划分

    Figure  4.  Mesh Arrangement for Equatorial Outboard Blanket Module

    图  5  各结构部件温度场

    Figure  5.  Temperature Field of Structural Components

    图  6  各结构部件应力场

    Figure  6.  Stress Field of Structural Components

    表  1  COOL包层热分析边界条件

    Table  1.   Boundary Conditions for Thermal Analysis of COOL Blanket

    部件冷却剂主流温度/℃对流换热系数/[W·(m2·K)−1]
    第一壁3757636
    冷却板3752062
    径向支撑板3754808
    进口联箱3504222
    出口联箱4004339
    第一排锂铅通道577 ~ 661845
    第二排锂铅通道509 ~ 546613
    第三排锂铅通道484 ~ 503488
    下载: 导出CSV

    表  2  包层各部件最高温度汇总

    Table  2.   Summary of Maximum Temperatures for Different Components in Blanket

    部件最高温度/℃温度限值/℃
    钨铠甲513.8< 1300
    碳化硅插件573.5< 1000
    碳化钨368.0< 1495
    第一壁506.2< 550
    冷却板450.1
    径向支撑板490.6
    联箱438.7
    间隙-第一壁423.8< 480
    间隙-冷却板450.1
    间隙-径向支撑板490.6
    间隙-联箱438.7
    下载: 导出CSV

    表  3  不同温度下RAFM钢的许用应力强度

    Table  3.   Allowable Stress Strength of RAFM Steel at Different Temperatures

    温度/℃300350400450500550
    Sm /MPa177172165154139118
    下载: 导出CSV

    表  4  正常运行工况下包层结构部件一次应力分析结果

    Table  4.   Primary Stress Analysis Results for Blanket Structural Components under Normal Operating Conditions

    部件$ \overline {{P_{\text{m}}}} $/MPaSm
    /MPa
    Sm裕度/%$ \overline {{P_{\text{L}}} + {P_{\text{b}}}} $
    /MPa
    1.5 Sm/MPa1.5 Sm裕度/%
    第一壁70.8170.258.4102.5255.459.9
    冷却板82.0166.050.6118.0249.152.6
    径向支撑板131.3170.823.1195.4256.323.8
    联箱90.81171.247.0100.0256.861.1
    下载: 导出CSV

    表  5  正常运行工况下包层热-机械性能分析结果

    Table  5.   Thermal-mechanical Analysis Results for Blanket under Normal Operating Conditions

    部件$ {\text{Max}}(\overline {{P_{\text{L}}} + {P_{\text{b}}}} ) + \overline Q $
    /MPa
    3Sm
    /MPa
    3Sm裕度/%
    第一壁280.3498.943.8
    冷却板359.9496.727.5
    径向支撑板483.8497.12.7
    联箱597.9498.6-19.9
    下载: 导出CSV
  • [1] WAN Y X, LI J G, LIU Y, et al. Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion, 2017, 57(10): 102009. doi: 10.1088/1741-4326/aa686a
    [2] ZHUANG G, LI G Q, LI J, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59(11): 112010. doi: 10.1088/1741-4326/ab0e27
    [3] PÉREZ RAMÍREZ A S, CASO A, GIANCARLI L, et al. Tauro: a ceramic composite structural material self-cooled Pb—17Li breeder blanket concept[J]. Journal of Nuclear Materials, 1996, 233-237: 1257-1261. doi: 10.1016/S0022-3115(96)00147-X
    [4] SZE D K, BILLONE M C, HUA T Q, et al. The ARIES-RS power core—recent development in Li/V designs[J]. Fusion Engineering and Design, 1998, 41(1-4): 371-376. doi: 10.1016/S0920-3796(97)00144-0
    [5] WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT1 system configuration, assembly, and maintenance[J]. Fusion Science and Technology, 2015, 67(1): 22-48. doi: 10.13182/FST14-797
    [6] DEL NEVO A, ARENA P, CARUSO G, et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project[J]. Fusion Engineering and Design, 2019, 146: 1805-1809. doi: 10.1016/j.fusengdes.2019.03.040
    [7] BOULLON R, AUBERT J, AIELLO G, et al. The DEMO helium cooled lithium lead "advanced-plus" breeding blanket: design improvement and FEM studies[J]. Fusion Engineering and Design, 2019, 146: 2026-2030. doi: 10.1016/j.fusengdes.2019.03.092
    [8] WU Y, FDS Team. Conceptual design of the China fusion power plant FDS-II[J]. Fusion Engineering and Design, 2008, 83(10-12): 1683-1689. doi: 10.1016/j.fusengdes.2008.06.048
    [9] FERNÁNDEZ-BERCERUELO I, PALERMO I, URGORRI F R, et al. Remarks on the performance of the EU DCLL breeding blanket adapted to DEMO 2017[J]. Fusion Engineering and Design, 2020, 155: 111559. doi: 10.1016/j.fusengdes.2020.111559
    [10] WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT2 DCLL power core design and engineering[J]. Fusion Science and Technology, 2015, 67(1): 193-219. doi: 10.13182/FST14-798
    [11] CHEN L, JIANG K C, MA X B, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800
    [12] WU Q R, LU P, ZHANG X K, et al. Neutronics analyses of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 179: 113130. doi: 10.1016/j.fusengdes.2022.113130
    [13] SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-940, IN3-IN4, 941-951.
    [14] JIANG K C, YU Y, MA X B, et al. Research on the thermal hydraulic design of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 176: 113053. doi: 10.1016/j.fusengdes.2022.113053
    [15] CIUCANI U M, PANTLEON W. Stagnant recrystallization in warm-rolled tungsten in the temperature range from 1150℃ to 1300℃[J]. Fusion Engineering and Design, 2019, 146: 814-817. doi: 10.1016/j.fusengdes.2019.01.088
    [16] TAN L, BYUN T S, KATOH Y, et al. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation[J]. Acta Materialia, 2014, 71: 11-19. doi: 10.1016/j.actamat.2014.03.015
    [17] SANNAZZARO G, BARABASH V, KANG S C, et al. Development of design criteria for ITER in-vessel components[J]. Fusion Engineering and Design, 2013, 88(9-10): 2138-2141. doi: 10.1016/j.fusengdes.2013.01.019
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  76
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-19
  • 修回日期:  2023-06-12
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回