Thermal-mechanic Analysis on COOL Blanket for CFETR
-
摘要: 超临界二氧化碳(sCO2)液态锂铅包层(COOL)是中国聚变工程实验堆(CFETR)的候选包层,其主要功能是增殖产氚、屏蔽中子辐射以及能量转换发电。COOL包层在正常运行工况下需要承受冷却剂压力、热应力、重力、电磁力等载荷。本文在不考虑重力和电磁载荷的情况下,采用ANSYS有限元方法对COOL包层扇段的赤道面外包层模块进行热-机械性能分析,结果表明,COOL包层在正常运行工况下,各类材料的最高温度不超过限值,并且结构应力能够满足ITER SDC-IC设计标准,分析结果可为包层优化设计提供重要参考和数据支撑。Abstract: The supercritical carbon dioxide (sCO2) liquid lead-lithium blanket (COOL) is a candidate for China Fusion Engineering Test Reactor (CFETR), and its main functions are tritium breeding, neutron radiation shielding and energy conversion to generate electricity. COOL cladding needs to bear loads such as coolant pressure, thermal stress, gravity and electromagnetic force under normal operating conditions. In this paper, the thermal and mechanical performance of the equatorial outboard blanket module in the COOL blanket segment are analyzed by ANSYS finite element method. The results show that the maximum temperature of various materials of the blanket under normal operating condition does not exceed the upper limit, and the structural stress could meet the ITER SDC-IC design standard. The analysis results can provide important reference and data support for the following iterative optimal design of the blanket.
-
表 1 COOL包层热分析边界条件
Table 1. Boundary Conditions for Thermal Analysis of COOL Blanket
部件 冷却剂主流温度/℃ 对流换热系数/[W·(m2·K)−1] 第一壁 375 7636 冷却板 375 2062 径向支撑板 375 4808 进口联箱 350 4222 出口联箱 400 4339 第一排锂铅通道 577 ~ 661 845 第二排锂铅通道 509 ~ 546 613 第三排锂铅通道 484 ~ 503 488 表 2 包层各部件最高温度汇总
Table 2. Summary of Maximum Temperatures for Different Components in Blanket
部件 最高温度/℃ 温度限值/℃ 钨铠甲 513.8 < 1300 碳化硅插件 573.5 < 1000 碳化钨 368.0 < 1495 第一壁 506.2 < 550 冷却板 450.1 径向支撑板 490.6 联箱 438.7 间隙-第一壁 423.8 < 480 间隙-冷却板 450.1 间隙-径向支撑板 490.6 间隙-联箱 438.7 表 3 不同温度下RAFM钢的许用应力强度
Table 3. Allowable Stress Strength of RAFM Steel at Different Temperatures
温度/℃ 300 350 400 450 500 550 Sm /MPa 177 172 165 154 139 118 表 4 正常运行工况下包层结构部件一次应力分析结果
Table 4. Primary Stress Analysis Results for Blanket Structural Components under Normal Operating Conditions
部件 $ \overline {{P_{\text{m}}}} $/MPa Sm
/MPaSm裕度/% $ \overline {{P_{\text{L}}} + {P_{\text{b}}}} $
/MPa1.5 Sm/MPa 1.5 Sm裕度/% 第一壁 70.8 170.2 58.4 102.5 255.4 59.9 冷却板 82.0 166.0 50.6 118.0 249.1 52.6 径向支撑板 131.3 170.8 23.1 195.4 256.3 23.8 联箱 90.81 171.2 47.0 100.0 256.8 61.1 表 5 正常运行工况下包层热-机械性能分析结果
Table 5. Thermal-mechanical Analysis Results for Blanket under Normal Operating Conditions
部件 $ {\text{Max}}(\overline {{P_{\text{L}}} + {P_{\text{b}}}} ) + \overline Q $
/MPa3Sm
/MPa3Sm裕度/% 第一壁 280.3 498.9 43.8 冷却板 359.9 496.7 27.5 径向支撑板 483.8 497.1 2.7 联箱 597.9 498.6 -19.9 -
[1] WAN Y X, LI J G, LIU Y, et al. Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion, 2017, 57(10): 102009. doi: 10.1088/1741-4326/aa686a [2] ZHUANG G, LI G Q, LI J, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59(11): 112010. doi: 10.1088/1741-4326/ab0e27 [3] PÉREZ RAMÍREZ A S, CASO A, GIANCARLI L, et al. Tauro: a ceramic composite structural material self-cooled Pb—17Li breeder blanket concept[J]. Journal of Nuclear Materials, 1996, 233-237: 1257-1261. doi: 10.1016/S0022-3115(96)00147-X [4] SZE D K, BILLONE M C, HUA T Q, et al. The ARIES-RS power core—recent development in Li/V designs[J]. Fusion Engineering and Design, 1998, 41(1-4): 371-376. doi: 10.1016/S0920-3796(97)00144-0 [5] WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT1 system configuration, assembly, and maintenance[J]. Fusion Science and Technology, 2015, 67(1): 22-48. doi: 10.13182/FST14-797 [6] DEL NEVO A, ARENA P, CARUSO G, et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project[J]. Fusion Engineering and Design, 2019, 146: 1805-1809. doi: 10.1016/j.fusengdes.2019.03.040 [7] BOULLON R, AUBERT J, AIELLO G, et al. The DEMO helium cooled lithium lead "advanced-plus" breeding blanket: design improvement and FEM studies[J]. Fusion Engineering and Design, 2019, 146: 2026-2030. doi: 10.1016/j.fusengdes.2019.03.092 [8] WU Y, FDS Team. Conceptual design of the China fusion power plant FDS-II[J]. Fusion Engineering and Design, 2008, 83(10-12): 1683-1689. doi: 10.1016/j.fusengdes.2008.06.048 [9] FERNÁNDEZ-BERCERUELO I, PALERMO I, URGORRI F R, et al. Remarks on the performance of the EU DCLL breeding blanket adapted to DEMO 2017[J]. Fusion Engineering and Design, 2020, 155: 111559. doi: 10.1016/j.fusengdes.2020.111559 [10] WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT2 DCLL power core design and engineering[J]. Fusion Science and Technology, 2015, 67(1): 193-219. doi: 10.13182/FST14-798 [11] CHEN L, JIANG K C, MA X B, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800 [12] WU Q R, LU P, ZHANG X K, et al. Neutronics analyses of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 179: 113130. doi: 10.1016/j.fusengdes.2022.113130 [13] SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-940, IN3-IN4, 941-951. [14] JIANG K C, YU Y, MA X B, et al. Research on the thermal hydraulic design of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 176: 113053. doi: 10.1016/j.fusengdes.2022.113053 [15] CIUCANI U M, PANTLEON W. Stagnant recrystallization in warm-rolled tungsten in the temperature range from 1150℃ to 1300℃[J]. Fusion Engineering and Design, 2019, 146: 814-817. doi: 10.1016/j.fusengdes.2019.01.088 [16] TAN L, BYUN T S, KATOH Y, et al. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation[J]. Acta Materialia, 2014, 71: 11-19. doi: 10.1016/j.actamat.2014.03.015 [17] SANNAZZARO G, BARABASH V, KANG S C, et al. Development of design criteria for ITER in-vessel components[J]. Fusion Engineering and Design, 2013, 88(9-10): 2138-2141. doi: 10.1016/j.fusengdes.2013.01.019