高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学计算流体临界点预测方法研究

赵学斌 黄彦平 叶绿

赵学斌, 黄彦平, 叶绿. 基于分子动力学计算流体临界点预测方法研究[J]. 核动力工程, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108
引用本文: 赵学斌, 黄彦平, 叶绿. 基于分子动力学计算流体临界点预测方法研究[J]. 核动力工程, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108
Zhao Xuebin, Huang Yanping, Ye Lyu. Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation[J]. Nuclear Power Engineering, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108
Citation: Zhao Xuebin, Huang Yanping, Ye Lyu. Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation[J]. Nuclear Power Engineering, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108

基于分子动力学计算流体临界点预测方法研究

doi: 10.13832/j.jnpe.2023.S1.0108
基金项目: 国家重点研发计划(2018YFE0116100);中国博士后面上基金(2021M693033);国防科技工业核动力技术创新中心资助(HDLCXZX-2021-HD-022)
详细信息
    作者简介:

    赵学斌(1990—),男,助理研究员,现主要从事超临界流体动力循环热工水力方面的研究,E-mail: xbzhao90@126.com

    通讯作者:

    黄彦平,E-mail: hyanping007@163.com

  • 中图分类号: TL334

Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation

  • 摘要: 使用分子动力学(MD)方法计算了CO2分子和H2O分子的临界点,通过对气液平衡状态下的物性参数外推获得较为精确的临界点结果。对于 CO2分子,使用 TraPPE模型和粗粒度模型 SAFT 进行了模拟,TraPPE模型计算结果更加接近美国国家标准与技术研究院(NIST)实验数据。对于H2O分子,使用SPC/E和TIP4P/2005模型进行计算,结果表明TIP4P/2005 模型的预测值与NIST实验数据最接近,同时对于分子水体系的饱和蒸汽压精确预测仍然存在挑战。

     

  • 图  1  气液平衡状态时分子体系状态和密度分布

    Figure  1.  Molecular System State and Density Distribution under Vapor-Liquid Equilibrium

    图  2  CO2气液饱和状态热物性计算结果

    Figure  2.  Calculation Results of CO2 Thermophysical Properties under Vapor-Liquid Saturation

    图  3  H2O气液饱和状态热物性计算结果

    Figure  3.  Calculation Results of H2O Thermophysical Properties under Vapor-Liquid Saturation

  • [1] SODEIFIAN G, GARLAPATI C, RAZMIMANESH F, et al. The solubility of Sulfabenzamide (an antibacterial drug) in supercritical carbon dioxide: evaluation of a new thermodynamic model[J]. Journal of Molecular Liquids, 2021, 335: 116446. doi: 10.1016/j.molliq.2021.116446
    [2] KIKIC I, VECCHIONE F. Supercritical impregnation of polymers[J]. Current Opinion in Solid State and Materials Science, 2003, 7(4-5): 399-405. doi: 10.1016/j.cossms.2003.09.001
    [3] LI X L, TANG G H, FAN Y H, et al. A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2022, 256: 115393. doi: 10.1016/j.enconman.2022.115393
    [4] JAEGER F, MATAR O K, MÜLLER E A. Bulk viscosity of molecular fluids[J]. The Journal of Chemical Physics, 2018, 148(17): 174504. doi: 10.1063/1.5022752
    [5] MÜLLER E A, JACKSON G. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations[J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5: 405-427. doi: 10.1146/annurev-chembioeng-061312-103314
    [6] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. doi: 10.1021/j100308a038
    [7] ABASCAL J L F, VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005[J]. The Journal of Chemical Physics, 2005, 123(23): 234505. doi: 10.1063/1.2121687
    [8] LINSTROM P J, MALLARD W G. NIST chemistry WebBook, NIST standard reference database number 69[M]. Gaithersburg: National Institute of Standards and Technology, 2023.
    [9] DEE G T, SAUER B B. The principle of corresponding states for polymer liquid surface tension[J]. Polymer, 1995, 36(8): 1673-1681. doi: 10.1016/0032-3861(95)99013-K
    [10] ROIZARD D. Antoine equation[M]//DRIOLI E, GIORNO L. Encyclopedia of Membranes. Berlin, Heidelberg: Springer, 2016: 1-3.
    [11] KHMELINSKII I, WOODCOCK L V. Supercritical fluid gaseous and liquid states: a review of experimental results[J]. Entropy, 2020, 22(4): 437. doi: 10.3390/e22040437
    [12] VEGA C, DE MIGUEL E. Surface tension of the most popular models of water by using the test-area simulation method[J]. The Journal of Chemical Physics, 2007, 126(15): 154707. doi: 10.1063/1.2715577
    [13] Representation of the surface tension of ordinary water Substance[C]//2014 International Association for the Properties of Water and Steam. Moscow, Russia, 23-27 June, 2014.
    [14] VEGA C, SANZ E, ABASCAL J L F. The melting temperature of the most common models of water[J]. The Journal of Chemical Physics, 2005, 122(11): 114507. doi: 10.1063/1.1862245
    [15] FINNEY J L. The water molecule and its interactions: the interaction between theory, modelling, and experiment[J]. Journal of Molecular Liquids, 2001, 90(1-3): 303-312. doi: 10.1016/S0167-7322(01)00134-9
  • 加载中
图(3)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  45
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-04
  • 修回日期:  2023-04-05
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回