高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LOCA事故工况下锆包壳的高温氧化行为研究进展

赵琬倩 贾玉振 裴静远 李国庆 吕俊男 张君松 廖京京 彭倩

赵琬倩, 贾玉振, 裴静远, 李国庆, 吕俊男, 张君松, 廖京京, 彭倩. LOCA事故工况下锆包壳的高温氧化行为研究进展[J]. 核动力工程, 2023, 44(S1): 119-124. doi: 10.13832/j.jnpe.2023.S1.0119
引用本文: 赵琬倩, 贾玉振, 裴静远, 李国庆, 吕俊男, 张君松, 廖京京, 彭倩. LOCA事故工况下锆包壳的高温氧化行为研究进展[J]. 核动力工程, 2023, 44(S1): 119-124. doi: 10.13832/j.jnpe.2023.S1.0119
Zhao Wanqian, Jia Yuzhen, Pei Jingyuan, Li Guoqing, Lyu Junnan, Zhang Junsong, Liao Jingjing, Peng Qian. Research Progress on High Temperature Oxidation Behavior of Zirconium Cladding under LOCA Condition[J]. Nuclear Power Engineering, 2023, 44(S1): 119-124. doi: 10.13832/j.jnpe.2023.S1.0119
Citation: Zhao Wanqian, Jia Yuzhen, Pei Jingyuan, Li Guoqing, Lyu Junnan, Zhang Junsong, Liao Jingjing, Peng Qian. Research Progress on High Temperature Oxidation Behavior of Zirconium Cladding under LOCA Condition[J]. Nuclear Power Engineering, 2023, 44(S1): 119-124. doi: 10.13832/j.jnpe.2023.S1.0119

LOCA事故工况下锆包壳的高温氧化行为研究进展

doi: 10.13832/j.jnpe.2023.S1.0119
基金项目: 国家自然科学基金项目(52101104)
详细信息
    作者简介:

    赵琬倩(1990—),女,博士研究生,现主要从事反应堆燃料及材料相关研究,E-mail: wanqianzhao@126.com

  • 中图分类号: TL334

Research Progress on High Temperature Oxidation Behavior of Zirconium Cladding under LOCA Condition

  • 摘要: 锆合金是被广泛地用于水冷动力堆反应的包壳材料。锆合金包壳在失水事故(LOCA)极端事故工况下的高温行为成为国内外学者研究和讨论的热点。本文综述了近年来国内外锆合金的高温氧化行为研究进展,详述了氧化动力学特征、氧化失稳现象和氧化转折机理,同时概述了近10 年中国核动力研究设计院(NPIC)的相关研究工作。本文报道的研究进展,尤其是对于转折机理的探讨,可为进一步提高国产化新型锆合金使用性能提供研发指导。

     

  • 图  1  模拟LOCA事故试验温度曲线与XRD测试温度曲线

    Figure  1.  Temperature Curves of Simulated LOCA Test and XRD Test

    图  2  Hyun-Gil Kim发现氢化物在α-Zr(O)层边界处形成

    Figure  2.  Hyun-Gil Kim Found Hydride Formed at Boundary of α-Zr(O) Layer

    图  3  “氢致转折”机理图

    Figure  3.  Schematic Diagram of Transition Caused by Hydrogen      

    图  4  t→m相变诱发氧化失稳示意图[28]

    ①、②、③—O/M波纹状界面,代表不同反应阶段O/M附近晶粒组织特征不同;surface—氧化膜-腐蚀环境界面;O/M interface—氧化物/金属的内表面

    Figure  4.  Schematic Diagram of Mechanism of Oxidation Breakaway Induced by t→m Phase Transition

    图  5  锆合金氧化膜/基体力学弯曲模型图[29]

    w—Zr合金基底层的宽度;r—中性轴的初始曲率半径;$ \theta $—简化弯曲弯曲梁的挠度;h1—Zr合金的基体层的厚度;h2—氧化膜的厚度;x—锆合金氧化前的中心厚度;O—建立坐标系的圆点

    Figure  5.  Mechanical Bending Model of Zirconium Alloy Oxidation Film/Matrix

  • [1] SCHANZ G, ADROGUER B, VOLCHEK A. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations: Part I. Experimental database and basic modeling[J]. Nuclear Engineering and Design, 2004, 232(1): 75-84. doi: 10.1016/j.nucengdes.2004.02.013
    [2] GROSSE M. Comparison of the high-temperature steam oxidation kinetics of advanced cladding materials[J]. Nuclear Technology, 2010, 170(1): 272-279. doi: 10.13182/NT10-A9464
    [3] KIM H H, KIM J H, MOON J Y, et al. High-temperature oxidation behavior of zircaloy-4 and zirlo in steam ambient[J]. Journal of Materials Science & Technology, 2010, 26(9): 827-832.
    [4] ERBACHER F J, LEISTIKOW S. Zircaloy fuel cladding behavior in a loss-of-coolant accident: a review[J]. ASTM, 1987, 19(18): 451-487.
    [5] BAEK J H, PARK K B, JEONG Y H, Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0. 1Fe at temperatures of 700-1200℃[J]. Journal of Nuclear Materials, 2004, 335(3): 443-456. doi: 10.1016/j.jnucmat.2004.08.007
    [6] STEINBRÜCK M, SCHAFFER S. High-temperature oxidation of zircaloy-4 in oxygen-nitrogen mixtures[J]. Oxidation of Metals, 2016, 85(3): 245-262.
    [7] LEISTIKOW S, SCHANZ G. Oxidation kinetics and related phenomena of Zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions[J]. Nuclear Engineering and Design, 1987, 103(1): 65-84. doi: 10.1016/0029-5493(87)90286-X
    [8] STEINBRÜCK M, VÉR N, GROßE M. Oxidation of advanced zirconium cladding alloys in steam at temperatures in the range of 600–1200℃[J]. Oxidation of Metals, 2011, 76(3-4): 215-232. doi: 10.1007/s11085-011-9249-3
    [9] 马树春,孙源珍,陈望春,等. PWR失水事故工况下燃料包壳与水蒸汽反应研究[J]. 原子能科学技术,1993, 27(4): 376-383.
    [10] 陈鹤鸣,马春来. 纯锆在400-850℃纯氧中的氧化[J]. 核科学与工程,1982, 2(1): 72-80.
    [11] 陈鹤呜,马春来,何晓蓓,等. 锆-4合金在高温水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报,1991, 11(1): 99-104.
    [12] 金耀华,王正品,高巍,等. 热处理后Zr-4合金高温氧化行为研究[J]. 西安工业大学学报,2015, 35(4): 329-334.
    [13] 高巍,张娴,王正品,等. M5和Zirlo合金高温水蒸气氧化行为研究[J]. 西安工业大学学报,2016, 36(6): 473-480.
    [14] ZINO R, CHOSSON R, OLLIVIER M, et al. Parallel mechanism of growth of the oxide and α-Zr(O) layers on Zircaloy-4 oxidized in steam at high temperatures[J]. Corrosion Science, 2021, 179: 109178. doi: 10.1016/j.corsci.2020.109178
    [15] BAEK J H, JEONG Y H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation[J]. Journal of Nuclear Materials, 2008, 372(2-3): 152-159. doi: 10.1016/j.jnucmat.2007.02.011
    [16] YAN Y, BURTSEVA T A, BILLONE M C. High-temperature steam-oxidation behavior of Zr-1Nb cladding alloy E110[J]. Journal of Nuclear Materials, 2009, 393(3): 433-448. doi: 10.1016/j.jnucmat.2009.06.029
    [17] ELLIOTT R P. Constitution of binary alloys First supplement[M]. New York: McGraw-Hill, 1965: 140.
    [18] BILLONE M, YAN Y, BURTSEVA T, et al. Cladding embrittlement during postulated loss-of-coolant accidents[R]. Argonne: Argonne National Lab. , 2008.
    [19] KIM H G, KIM I H, JUNG Y I, et al. Properties of Zr Alloy cladding after simulated loca oxidation and water quenching[J]. Nuclear Engineering and Technology, 2010, 42(2): 193-202. doi: 10.5516/NET.2010.42.2.193
    [20] BRACHET J C, VANDENBERGHE-MAILLOT V, PORTIER L, et al. Hydrogen content, preoxidation, and cooling scenario effects on post-quench microstructure and mechanical properties of zircaloy-4 and m5 alloys in LOCA conditions[J]. Journal of ASTM International, 2008, 5(5): 169.
    [21] LEISTIKOW S, SCHANZ G, ZUREK Z. Comparison of high temperature steam oxidation behavior of Zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects: 3994[R]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH, 1985: 105.
    [22] KIM H G, KIM I H, CHOI B K, et al. A study of the breakaway oxidation behavior of zirconium cladding materials[J]. Journal of Nuclear Materials, 2011, 418(1-3): 186-197. doi: 10.1016/j.jnucmat.2011.06.039
    [23] KIM H G, JEONG Y H, KIM K T. The effects of creep and hydride on spent fuel integrity during interim dry storage[J]. Nuclear Engineering and Technology, 2010, 42(3): 249-258. doi: 10.5516/NET.2010.42.3.249
    [24] 邱军, 刘欣, 赵文金. N18合金高温氧化行为研究[R]. 成都: 中国核动力研究设计院科学技术年报, 2012.
    [25] 邱军, 赵文金, 苗志. 预氧化对N18锆合金高温氧化行为的影响[C]//中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第4册(核材料分卷、同位素分离分卷、核化学与放射化学分卷). 哈尔滨: 中国核学会, 2013.
    [26] 邱军,赵文金,GUILBERT T,等. 3种锆合金的高温氧化行为[J]. 金属学报,2011, 47(9): 1216-1220.
    [27] 刘彦章,邱军,刘欣,等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程,2010, 31(2): 85-88.
    [28] 廖京京. Zr-Sn-Nb锆合金高温水腐蚀反应动力学转折机理研究[D]. 成都: 中国核动力研究设计院, 2020.
    [29] 张君松,吕俊男,龙冲生,等. 锆合金氧化膜的内应力计算[J]. 核动力工程,2021, 42(4): 101-104.
  • 加载中
图(5)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  55
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-04-19
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回