高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构参数对铝基泡沫金属屏蔽性能影响研究

吴松岭 叶祝涛 李艾华 李刚 刘晓珍

吴松岭, 叶祝涛, 李艾华, 李刚, 刘晓珍. 结构参数对铝基泡沫金属屏蔽性能影响研究[J]. 核动力工程, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125
引用本文: 吴松岭, 叶祝涛, 李艾华, 李刚, 刘晓珍. 结构参数对铝基泡沫金属屏蔽性能影响研究[J]. 核动力工程, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125
Wu Songling, Ye Zhutao, Li Aihua, Li Gang, Liu Xiaozhen. Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal[J]. Nuclear Power Engineering, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125
Citation: Wu Songling, Ye Zhutao, Li Aihua, Li Gang, Liu Xiaozhen. Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal[J]. Nuclear Power Engineering, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125

结构参数对铝基泡沫金属屏蔽性能影响研究

doi: 10.13832/j.jnpe.2023.S1.0125
基金项目: 中国核动力研究设计院反应堆燃料及材料重点实验室基金(STRFML-2020-20)
详细信息
    作者简介:

    吴松岭(1987—),男,硕士研究生,副研究员,现主要从事反应堆屏蔽材料研究,E-mail: slwucn@163.com

    通讯作者:

    李艾华,E-mail: ahli@xmu.edu.cn

  • 中图分类号: TL334

Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal

  • 摘要: 金属泡沫材料拥有优良的γ射线屏蔽能力和较低的密度,但影响其屏蔽性能的关键结构参数及作用规律尚不明确,阻碍了该材料屏蔽性能的进一步优化。本文采用蒙特卡罗方法构建了2种最密堆球模型,计算了理想铝基泡沫金属在各结构参数下的屏蔽性能。研究发现,铝基泡沫金属对能量低于0.24 MeV软γ射线屏蔽能力优于铝基块体材料。控制空心球填充率是优化该材料屏蔽性能的主要可操控方式,且在其适合辐射屏蔽能段时材料越轻性能越好。堆球方式是影响材料屏蔽137Cs、60Co源γ射线性能的最重要参数,实现面心立方最密堆球铝基泡沫金属的制备将弱化其在屏蔽硬γ射线时的劣势。

     

  • 图  1  面心立方晶胞以及fcc、hcp堆球示意图

    Figure  1.  Schematic Diagram of fcc Cell and Packing Spheres with fcc and hcp Style

    图  2  各组元屏蔽不同能量γ射线的MAC

    Figure  2.  MAC to γ-ray with Various Energy for Each Components       

    图  3  铝基泡沫金属屏蔽不同能量γ射线时的MAC

    Figure  3.  MAC of Al-Based Foam Metal when Shielding γ-ray with Different Energy

    图  4  γ射线穿透不同屏蔽体厚度fcc、hcp型铝基泡沫金属的几率

    Figure  4.  Probability of γ-ray Penetrating fcc and hcp Aluminum-based Foam Metal with Different Shielding Thicknesses

    图  5  不同大小薄壁空心球构建铝基泡沫金属的MAC

    Figure  5.  MACs of Al-Based Foam Metal Constructed by Hollow Spheres with Different Sizes

    图  6  薄壁空心球堆积密度对γ射线MAC的影响

    Figure  6.  Effect of Hollow Sphere Packing Density on MAC to γ-ray

    图  7  MAC随不锈钢空心球壁厚的变化

    Figure  7.  Variation of MAC with Wall Thickness of Stainless Steel Hollow Sphere

  • [1] 方楠,陕临喆,王敏. 国外超轻金属材料最新进展及其军用潜力分析[J]. 军民两用技术与产品,2020(3): 8-14. doi: 10.19385/j.cnki.1009-8119.2020.03.002
    [2] CHEN S, MARX J, RABIEI A. Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams[J]. International Journal of Thermal Sciences, 2016, 106: 70-79. doi: 10.1016/j.ijthermalsci.2016.03.005
    [3] RABIEI A, VENDRA L J. A comparison of composite metal foam's properties and other comparable metal foams[J]. Materials Letters, 2009, 63(5): 533-536. doi: 10.1016/j.matlet.2008.11.002
    [4] MARX J C, ROBBINS S J, GRADY Z A, et al. Polymer infused composite metal foam as a potential aircraft leading edge material[J]. Applied Surface Science, 2020, 505: 144114. doi: 10.1016/j.apsusc.2019.144114
    [5] 王淼,王录才. 泡沫铝及其复合结构的制备和应用现状[J]. 材料导报,2015, 29(3): 81-84.
    [6] ZHANG Y, CHEN F D, TANG X B, et al. Preparation and characterization of paraffin/nickel foam composites as neutron-shielding materials[J]. Journal of Composite Materials, 2018, 52(7): 953-962. doi: 10.1177/0021998317717596
    [7] RABIEI A, O’NEILL A T. A study on processing of a composite metal foam via casting[J]. Materials Science and Engineering:A, 2005, 404(1-2): 159-164. doi: 10.1016/j.msea.2005.05.089
    [8] CHEN S, BOURHAM M, RABIEI A. Novel light-weight materials for shielding gamma ray[J]. Radiation Physics and Chemistry, 2014, 96: 27-37. doi: 10.1016/j.radphyschem.2013.08.001
    [9] CHEN S, BOURHAM M, RABIEI A. Neutrons attenuation on composite metal foams and hybrid open-cell Al foam[J]. Radiation Physics and Chemistry, 2015, 109: 27-39. doi: 10.1016/j.radphyschem.2014.11.003
    [10] 龚军军,陈志刚,黄颂新,等. 新型耐高温中子屏蔽复合材料的设计制备及性能研究[J]. 原子能科学技术,2021, 55(7): 1323-1330.
    [11] 张哲维,王文先,张鹏,等. MC方法研究颗粒变化影响B4C/Al中子吸收性能的机制[J]. 太原理工大学学报,2015, 46(4): 385-388,413.
    [12] 邱飒蔚,张新娜,郝青显,等. 泡沫金属材料仿真建模的研究进展(英文)[J]. 稀有金属材料与工程,2015, 44(11): 2670-2676.
    [13] 王梦梦. 基于孔隙结构控制的闭孔泡沫铝性能参数及应用研究[D]. 秦皇岛: 燕山大学, 2017.
    [14] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library with Cielo-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [15] POLLITT A J, SMITH A G, TSEKHANOVICH I, et al. Measurements of γ-ray energy and multiplicity from 235U(nthermal) using STEFF[J]. EPJ Web of Conferences, 2015, 93: 02018. doi: 10.1051/epjconf/20159302018
    [16] 白鸿伟,李达,郭寻,等. 基于蒙特卡罗方法的复合材料辐射屏蔽设计[J]. 辐射防护,2022, 42(1): 41-47. doi: 10.3969/j.issn.1000-8187.2022.1.fsfh202201009
    [17] BURRUS W R. How channeling between chunks raises neutron transmission through Boral[J]. Nucleonics, 1956, 16(1): 91-94.
  • 加载中
图(7)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  20
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 修回日期:  2023-02-06
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回