Study on Anisotropy of Mechanical Properties of Zr-Sn-Nb Alloy Strip
-
摘要: 为探究Zr-Sn-Nb合金带材织构对其不同方向力学性能的影响,采用电子背散射衍射技术(EBSD)和拉伸试验分别对成品退火态Zr-0.85Sn-1Nb-0.3Fe合金带材的织构及不同方向力学性能进行系统分析。结果表明,合金带材中形成了典型的基面双峰织构,导致了力学性能的各向异性。随拉伸加载方向与轧制方向(RD)夹角的增大,带材主要滑移系的Schmid因子呈下降趋势,使得滑移系开启难度增大,屈服强度和屈强比增大,抗拉强度和硬化指数降低,Zr-Sn-Nb合金带材在RD上具有相对较好的冲压成形能力。
-
关键词:
- Zr-0.85Sn-1Nb-0.3Fe合金带材 /
- 织构 /
- 力学性能
Abstract: In order to explore the influence of the texture of the Zr-Sn-Nb alloy strip on its mechanical properties in different directions, the texture and mechanical properties in different directions of the finished annealed Zr-0.85Sn-1Nb-0.3Fe alloy strip were systematically analyzed by Electron Backscatter Diffraction (EBSD) and tensile test. The results showed that the typical bimodal basal texture was formed in the alloy strip, leading to the anisotropy of mechanical properties. With the increase of the angle between the loading direction and the RD (Rolling Direction), the Schmid factor of the main slip system in the strip showed a decreasing trend, which increased the opening difficulty of the slip system. Also the yield strength and yield ratio increased, while the tensile strength and work-hardening index decreased. As a result, the Zr-Sn-Nb alloy strip has relatively better stamping formability in the RD.-
Key words:
- Zr-0.85Sn-1Nb-0.3Fe alloy strip /
- Texture /
- Mechanical properties
-
表 1 锆合金带材偏离RD不同角度方向上的n和K
Table 1. n and K of Zr-Sn-Nb Alloy Strip Deviating from RD at Different Angles
力学性能参数 0° 30° 45° 60° 90° n 0.123 0.103 0.091 0.074 0.063 K 755.42 701.39 649.12 619.73 596.39 -
[1] 李峰,王丹. 定位格架电阻焊熔核偏移工艺优化[J]. 自动化与仪器仪表,2019(3): 151-153. doi: 10.14016/j.cnki.1001-9227.2019.03.151 [2] 王雄,杜代全,曾小康,等. VVER反应堆燃料组件流动传热特性CFD分析[J]. 核动力工程,2018, 39(3): 6-9. doi: 10.13832/j.jnpe.2018.03.0006 [3] 杨晓东. AFA 3G及其它高性能燃料组件[J]. 原子能科学技术,2003(S1): 15-20. doi: 10.3969/j.issn.1000-6931.2003.z1.005 [4] SOLONIN M I, BIBILASHVILI Y K, SOKOLOV N B, et al. Development of alternative fuel assembly for WWER-1000 reactor[J]. Nuclear Engineering and Design, 1997, 173(1-3): 327-331. doi: 10.1016/S0029-5493(97)00115-5 [5] YAGNIK S, GARDE A. Zirconium alloys for LWR fuel cladding and core internals[M]//ODETTE G R, ZINKLE S J. Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier, 2019: 247-291. [6] AKHTAR A. Prismatic slip in zirconium single crystals at elevated temperatures[J]. Metallurgical Transactions A, 1975, 6(6): 1217-1222. doi: 10.1007/BF02658531 [7] TEWARI R, KRISHNA K V M, NEOGY S, et al. Zirconium and its alloys: properties and characteristics[J]. Comprehensive Nuclear Materials (Second Edition), 2020, 7: 284-302. [8] WANG Y N, HUANG J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81(1): 11-26. doi: 10.1016/S0254-0584(03)00168-8 [9] BALLINGER R G, LUCAS G E, PELLOUX R M. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2[J]. Journal of Nuclear Materials, 1984, 126(1): 53-69. doi: 10.1016/0022-3115(84)90532-4 [10] 刘榕镇. 新型锆合金薄板带材冲制性能及其影响因素研究[D]. 长沙: 湖南大学, 2019. [11] 邓振鹏. 新锆合金薄板带材的可冲性及冲制工艺优化[D]. 长沙: 湖南大学, 2019. [12] 李麦海,王兴. 锆合金变形机理及其板材织构演化规律[J]. 钛工业进展,2012, 29(6): 6-10. doi: 10.13567/j.cnki.issn1009-9964.2012.06.013 [13] 张世进,李凯,易丹青,等. 冷轧TA5钛合金退火过程的再结晶行为及织构演变[J]. 金属热处理,2022, 47(2): 1-8. [14] 毛卫民, 赵新兵. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994: 159. [15] 彭倩,沈保罗. 锆合金的织构及其对性能的影响[J]. 稀有金属,2005, 29(6): 903-907. doi: 10.3969/j.issn.0258-7076.2005.06.021 [16] 栾佰峰,余泓冰,黄天林,等. 锆合金变形机制研究评述[J]. 稀有金属材料与工程,2012, 41(S2): 357-360.