Corrosion Behavior of High Strength AlCrFeNi Multi-principal- component Alloy in Lead-bismuth Alloy
-
摘要: 传统结构材料限制了铅铋核能系统性能的进一步提高,为给铅铋反应堆提供高性能结构材料,针对高强Al17Cr10Fe37Ni36多主元合金开展了高温静态铅铋合金环境相容性研究。研究表明,在500~600℃的铅铋饱和氧环境下,合金形成致密的Fe-Cr-Al-O氧化膜与疏松的氧化铁双层氧化膜结构,双层氧化膜厚度仅有1.5 μm,氧化膜生长速率极低;Fe-Cr-Al-O氧化膜在高温铅铋环境具有极佳的致密性、结构与组织稳定性,显著保护了液态铅铋向基体溶解。相比于传统的铁素体/马氏体钢(F/M钢)、奥氏体不锈钢,Al17Cr10Fe37Ni36多主元合金在高温铅铋环境中应用具有明显的优势。
-
关键词:
- 铅铋合金 /
- Al17Cr10Fe37Ni36多主元合金 /
- 腐蚀
Abstract: Traditional structure materials limit the higher performance of lead-bismuth nuclear system. In order to provide high-performance structural materials for lead-bismuth reactors, a study on static lead-bismuth eutectic compatability at high temperature for the high strength Al17Cr10Fe37Ni36 multi-principal-component alloy was carried out. The results showed that the alloy formed a dense Fe-Cr-Al-O oxide film and a loose iron oxide double-layer oxide film structure in the lead-bismuth saturated oxygen environment at 500~600℃. The double oxidation film is only 1.5μm, which shows that the growth velocity of double oxidation film is slowly. The study show the Fe–Cr–Al oxide film own excellent compactness and structure stability, which prevent the lead-bismuth corrode the matrix. This study shows that the advance of AlCrFeNi multi-principal-component alloys in the lead-bismuth system, compared with the traditional ferrite/martensite stainless steel and austenite stainless steel.-
Key words:
- PbBi alloy /
- AlCrFeNi multi-principal-component alloy /
- Corrosion
-
表 1 Al17Cr10Fe37Ni36合金设计成分
Table 1. Designed Composition of Al17Cr10Fe37Ni36
元素 Al Cr Fe Ni Mo 原子百分数/% 17 10 37 36 2 -
[1] ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor-ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029 [2] ALEMBERTI A, SMIRNOV V, SMITH C F. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011 [3] OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 戎利建, 张玉妥, 陆善平, 等译. 北京: 科学出版社, 2007: 184-222. [4] FAZIO C, BALBAUD F. Corrosion phenomena induced by liquid metals in Generation IV reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. London: Woodhead Publishing, 2017: 23-74. [5] 龚星,肖军,王浩,等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理[J]. 核科学与工程,2020, 40(5): 864-871. [6] POPOVIC M P, BOLIND A M, AUSSAT Y, et al. Oxidative passivation of Fe-Cr-Al steels in lead-bismuth eutectic under oxygen-controlled static conditions at 700° and 800 °C[J]. Journal of Nuclear Materials, 2019, 523: 172-181. doi: 10.1016/j.jnucmat.2019.06.004 [7] TIAN S J, JIANG Z Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500℃[J]. Materials and Corrosion, 2016, 67(12): 1274-1285. doi: 10.1002/maco.201609075 [8] WANG J, LU S P, RONG L J, et al. Effect of silicon on the oxidation resistance of 9 wt. % Cr heat resistance steels in 550℃ lead-bismuth eutectic[J]. Corrosion Science, 2016, 111: 13-25. doi: 10.1016/j.corsci.2016.04.020 [9] BALBAUD-CELERIER F, DELOFFRE P, TERLAIN A, et al. Corrosion of metallic materials in flowing liquid lead-bismuth[J]. Journal De Physique IV, 2002, 12: 177-190. [10] SHI Q Q, LIU J, LUAN H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600℃[J]. Journal of Nuclear Materials, 2015, 457: 135-141. doi: 10.1016/j.jnucmat.2014.11.018 [11] WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 2011, 415(3): 260-269. doi: 10.1016/j.jnucmat.2011.04.028 [12] RIVAI A K, PANITRA M, HEINZEL A. Nano-channels early formation investigation on stainless steel 316Ti after immersion in molten Pb-Bi[J]. Makara Journal of Technology, 2017, 21(1): 13-18. doi: 10.7454/mst.v21i1.3074 [13] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019 [14] 王建斌. AlCrFeNi多主元合金的组织演化与性能调控[D]. 西安: 西北工业大学, 2021.