高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为

黄赟浩 王健斌 王志军 赵可

黄赟浩, 王健斌, 王志军, 赵可. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137-142. doi: 10.13832/j.jnpe.2023.S1.0137
引用本文: 黄赟浩, 王健斌, 王志军, 赵可. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137-142. doi: 10.13832/j.jnpe.2023.S1.0137
Huang Yunhao, Wang Jianbin, Wang Zhijun, Zhao Ke. Corrosion Behavior of High Strength AlCrFeNi Multi-principal- component Alloy in Lead-bismuth Alloy[J]. Nuclear Power Engineering, 2023, 44(S1): 137-142. doi: 10.13832/j.jnpe.2023.S1.0137
Citation: Huang Yunhao, Wang Jianbin, Wang Zhijun, Zhao Ke. Corrosion Behavior of High Strength AlCrFeNi Multi-principal- component Alloy in Lead-bismuth Alloy[J]. Nuclear Power Engineering, 2023, 44(S1): 137-142. doi: 10.13832/j.jnpe.2023.S1.0137

铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为

doi: 10.13832/j.jnpe.2023.S1.0137
详细信息
    作者简介:

    黄赟浩(1994—),男,副研究员,现从事反应堆燃料与材料研究工作,Email:huangyunhao@mail.nwpu.edu.cn

  • 中图分类号: TL334

Corrosion Behavior of High Strength AlCrFeNi Multi-principal- component Alloy in Lead-bismuth Alloy

  • 摘要: 传统结构材料限制了铅铋核能系统性能的进一步提高,为给铅铋反应堆提供高性能结构材料,针对高强Al17Cr10Fe37Ni36多主元合金开展了高温静态铅铋合金环境相容性研究。研究表明,在500~600℃的铅铋饱和氧环境下,合金形成致密的Fe-Cr-Al-O氧化膜与疏松的氧化铁双层氧化膜结构,双层氧化膜厚度仅有1.5 μm,氧化膜生长速率极低;Fe-Cr-Al-O氧化膜在高温铅铋环境具有极佳的致密性、结构与组织稳定性,显著保护了液态铅铋向基体溶解。相比于传统的铁素体/马氏体钢(F/M钢)、奥氏体不锈钢,Al17Cr10Fe37Ni36多主元合金在高温铅铋环境中应用具有明显的优势。

     

  • 图  1  Al17Cr10Fe37Ni36合金在500℃经不同腐蚀时间后试样腐蚀截面的微观形貌

    Figure  1.  Microstructure of Corrosion Interface of Al17Cr10Fe37Ni36 Multi-Principal-Component Alloy after Different Corrosion Times at 500℃

    图  2  500℃不同腐蚀时间后清洗铅铋后试样的表面形貌

    Figure  2.  Surface Topography of Rinsed LBE after Different Corrosion Times at 500℃

    图  3  500℃、1000 h腐蚀后试样与铅铋界面处扫描电子显微镜条件下的EDS线扫结果

    元素/at%—原子百分比,下同

    Figure  3.  EDS Line Scanning Results by SEM of Interface between Corrosion Sample and LBE at 500℃ for 1000 h

    图  4  Al17Cr10Fe37Ni36合金经过500℃、1500 h腐蚀后界面处的TEM表征结果

    Figure  4.  TEM Characterization Results of Al17Cr10Fe37Ni36 Multi-Principal-Component Alloy Corrosion Interface after 1500 h at 500℃

    图  5  600℃、1000 h腐蚀后试样与铅铋界面处SEM下的EDS线扫结果

    Figure  5.  EDS Line Scanning Results by SEM of Interface between Corrosion Sample and LBE at 600℃ for 1000 h

    表  1  Al17Cr10Fe37Ni36合金设计成分

    Table  1.   Designed Composition of Al17Cr10Fe37Ni36

    元素AlCrFeNiMo
    原子百分数/%171037362
    下载: 导出CSV
  • [1] ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor-ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
    [2] ALEMBERTI A, SMIRNOV V, SMITH C F. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [3] OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 戎利建, 张玉妥, 陆善平, 等译. 北京: 科学出版社, 2007: 184-222.
    [4] FAZIO C, BALBAUD F. Corrosion phenomena induced by liquid metals in Generation IV reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. London: Woodhead Publishing, 2017: 23-74.
    [5] 龚星,肖军,王浩,等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理[J]. 核科学与工程,2020, 40(5): 864-871.
    [6] POPOVIC M P, BOLIND A M, AUSSAT Y, et al. Oxidative passivation of Fe-Cr-Al steels in lead-bismuth eutectic under oxygen-controlled static conditions at 700° and 800 °C[J]. Journal of Nuclear Materials, 2019, 523: 172-181. doi: 10.1016/j.jnucmat.2019.06.004
    [7] TIAN S J, JIANG Z Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500℃[J]. Materials and Corrosion, 2016, 67(12): 1274-1285. doi: 10.1002/maco.201609075
    [8] WANG J, LU S P, RONG L J, et al. Effect of silicon on the oxidation resistance of 9 wt. % Cr heat resistance steels in 550℃ lead-bismuth eutectic[J]. Corrosion Science, 2016, 111: 13-25. doi: 10.1016/j.corsci.2016.04.020
    [9] BALBAUD-CELERIER F, DELOFFRE P, TERLAIN A, et al. Corrosion of metallic materials in flowing liquid lead-bismuth[J]. Journal De Physique IV, 2002, 12: 177-190.
    [10] SHI Q Q, LIU J, LUAN H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600℃[J]. Journal of Nuclear Materials, 2015, 457: 135-141. doi: 10.1016/j.jnucmat.2014.11.018
    [11] WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 2011, 415(3): 260-269. doi: 10.1016/j.jnucmat.2011.04.028
    [12] RIVAI A K, PANITRA M, HEINZEL A. Nano-channels early formation investigation on stainless steel 316Ti after immersion in molten Pb-Bi[J]. Makara Journal of Technology, 2017, 21(1): 13-18. doi: 10.7454/mst.v21i1.3074
    [13] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [14] 王建斌. AlCrFeNi多主元合金的组织演化与性能调控[D]. 西安: 西北工业大学, 2021.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  34
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-04-30
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回