Effect of Thermal Aging on Impact Toughness of 20Cr25NiNb Stainless Steel
-
摘要: 针对长时间高温下合金力学性能退化问题,开展超临界气冷堆候选包壳材料的热老化研究。对改进型气冷堆用原型20Cr25NiNb不锈钢和添加不同元素的改进型合金,开展650℃下3000 h热老化试验。组织和性能结果表明,所有合金的冲击吸收能量(KV2)均随热老化进行而下降。这种塑性降低与高温下第二相演化密切相关。沿晶界先后析出M23C6和G相导致原型合金冲击韧性先下降再缓慢上升。添加W和Mo元素后,沿晶界析出Laves和σ相,引起KV2下降更快;B元素可细化晶界σ相,使得冲击韧性下降幅度小于不含B元素。加入Al元素后,合金基体中析出大量Laves和NiAl相,同时晶界σ相快速粗化,导致材料脆化严重。
-
关键词:
- 20Cr25NiNb不锈钢 /
- 热老化 /
- 冲击韧性 /
- 析出相 /
- B元素
Abstract: In view of the degradation of alloy mechanical properties under prolonged high temperature exposure, the thermal aging study of candidate cladding materials for supercritical gas-cooled reactor was carried out. The prototype 20Cr25NiNb stainless steel for advanced gas-cooled reactor (AGR) reactor and improved alloys with different elements were subjected to thermal aging test at 650°C for 3000 h. The results of microstructure and properties showed that the impact absorbed energy (KV2) of all alloys decreased as the thermal aging proceeded. This plasticity decrease was closely related to the evolution of second phases at high temperature. The precipitation of M23C6 and G phases along grain boundaries led to a decrease and then a slow increase in the impact toughness of the prototype alloy. The addition of W and Mo elements brought the precipitation of Laves and σ phases at grain boundaries, causing a faster decrease in KV2; B element refined σ phase and made the impact toughness decrease less than that of the alloy without B. After adding Al, a large number of Laves and NiAl phases precipitated in the matrix, while the σ phase at grain boundaries coarsened rapidly, leading to severe material embrittlement.-
Key words:
- 20Cr25NiNb stainless steel /
- Thermal aging /
- Impact toughness /
- Precipitated phases /
- Boron
-
表 1 20Cr25NiNb不锈钢化学成分 %
Table 1. Chemical Composition of 20Cr25NiNb Stainless Steel %
样品编号 Ni Cr Nb Si Mn W Mo C Al B Fe 2025SS 23.2 19.3 0.63 0.5 0.7 0.053 余量 2025WMo 23.5 20 0.76 0.5 0.7 2 1 0.047 余量 2025WMoB 24.4 19.5 0.95 0.5 0.7 2 1 0.037 0.0018 余量 2025WMoAlB 23.4 19.4 0.83 0.2 0.6 2 1.1 0.057 2.5 0.0023 余量 -
[1] DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004. [2] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005 [3] POWELL D J, PILKINGTON R, MILLER D A. The precipitation characteristics of 20% Cr/25% Ni-Nb stabilised stainless steel[J]. Acta Metallurgica, 1988, 36(3): 713-724. doi: 10.1016/0001-6160(88)90105-8 [4] MINAMI Y, KIMURA H, IHARA Y. Microstructural changes in austenitic stainless steels during long-term aging[J]. Materials Science and Technology, 1986, 2(8): 795-806. doi: 10.1179/mst.1986.2.8.795 [5] ECOB R C, LOBB R C, KOHLER V L. The formation of G-phase in 20/25 Nb stainless steel AGR fuel cladding alloy and its effect on creep properties[J]. Journal of Materials Science, 1987, 22(8): 2867-2880. doi: 10.1007/BF01086484 [6] WANG M, SUN H Y, PHANIRAJ M P, et al. Evolution of microstructure and tensile properties of Fe–18Ni–12Cr based AFA steel during aging at 700°C[J]. Materials Science and Engineering:A, 2016, 672: 23-31. doi: 10.1016/j.msea.2016.06.060