Effect of Thermal Aging on Mechanical Properties of Silicon-containing Ferritic/Martensitic Steel
-
摘要: 对4种不同Si含量的9Cr-铁素体/马氏体(F/M)钢开展550℃热时效实验(最长时间为5000 h),测试其屈服强度(Rp0.2)、抗拉强度(Rm)、延伸率(A)等力学性能,并结合扫描电子显微镜/能谱仪(SEM/EDS)、透射电子显微镜(TEM)表征手段,研究微观组织结构与力学性能之间的关联规律。结果表明:添加少量的Si可以提高9Cr-F/M钢的强度,且Si含量(质量分数)为0.7%时,Rp0.2和Rm达到最大值,但Si的添加会促进Laves相析出;时效时间(t)对9Cr-F/M钢的塑性有显著影响,当t<2500 h时,9Cr-F/M钢的塑性变化不大,但当Si含量提高至1.0%,经5000 h时效后塑性大幅下降,这归因于Laves相在晶界的析出和长大。
-
关键词:
- 铁素体/马氏体(F/M)钢 /
- 热时效 /
- 力学性能 /
- 显微组织 /
- Laves相
Abstract: Four kinds of 9Cr- ferritic/martensitic (F/M) steels with different Si contents were heat aged at 550°C (the longest time was 5000 h), and their mechanical properties such as yield strength (Rp0.2), tensile strength (Rm) and elongation (A) were tested. The relationship between microstructure and mechanical properties was studied by means of scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and transmission electron microscope (TEM). The results show that the strength of 9Cr-F/M steel can be improved by adding a small amount of Si, and when the Si content (mass fraction) is 0.7%, Rp0.2 and Rm reach the maximum, but the addition of Si will promote Laves phase precipitation. Aging time (t) has a significant effect on the plasticity of 9Cr-F/M steel. When t < 2500 h, the plasticity of 9Cr-F/M steel has little change, but when the Si content is increased to 1.0%, the plasticity decreases greatly after aging for 5000 h, which is attributed to the precipitation and growth of Laves phase at the grain boundary.-
Key words:
- Ferritic/Martensitic (F/M) Steel /
- Thermal aging /
- Mechanical properties /
- Microstructure /
- Laves phase
-
表 1 不同Si含量F/M钢在不同t的力学性能
Table 1. Mechanical Properties of F/M Steel with Different Si Content at Different t
序号 Si含量/% t /h 弹性模量(E)/MPa Rp0.2/MPa Rm/MPa A/% 断面收缩率(Z)/% 1 0 0 211842 645 755 20.8 74.2 2 1000 204819 655 748 13.4 73.4 3 2500 206535 660 759 16.9 72.2 4 5000 205648 652 757 17.1 68.1 5 0.4 0 216468 613 735 18.2 70.8 6 1000 204832 619 732 19.0 71.9 7 2500 206685 614 731 20.4 69.4 8 5000 206728 579 711 19.3 67.0 9 0.7 0 217544 703 806 17.9 69.3 10 1000 210522 716 816 16.8 67.9 11 2500 208771 699 812 17.8 66.0 12 5000 210745 700 816 16.2 63.4 13 1.0 0 214690 657 789 18.9 68.4 14 2500 207019 666 792 19.2 64.0 15 5000 209741 668 809 13.2 57.5 -
[1] 李辉,李烁,史春丽,等. 超低碳低活化铁素体/马氏体钢的低温韧性[J]. 金属热处理,2018, 43(1): 22-27. doi: 10.13251/j.issn.0254-6051.2018.01.005 [2] ALLEN T R, KAOUMI D, WHARRY J P, et al. Characterization of microstructure and property evolution in advanced cladding and duct: materials exposed to high dose and elevated temperature[J]. Journal of Materials Research, 2015, 30(9): 1246-1274. doi: 10.1557/jmr.2015.99 [3] KLUEH R L. Ferritic/martensitic steels for advanced nuclear reactors[J]. Transactions of the Indian Institute of Metals, 2009, 62(2): 81-87. doi: 10.1007/s12666-009-0011-3 [4] ZHANG J S. A review of steel corrosion by liquid lead and lead–bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. doi: 10.1016/j.corsci.2009.03.013 [5] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019 [6] SCHROER C, TSISAR V, DURAND A, et al. Corrosion in iron and steel T91 caused by flowing lead-bismuth eutectic at 400℃ and 10-7 mass% dissolved oxygen[J]. Journal of Nuclear Engineering and Radiation Science, 2019, 5(1): 011006. doi: 10.1115/1.4040937 [7] WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 2011, 415(3): 260-269. doi: 10.1016/j.jnucmat.2011.04.028 [8] 丁君艳. 9-12%Cr铁素体/马氏体耐热钢的显微组织和力学性能研究[D]. 淄博: 山东理工大学, 2008: 39. [9] 宋亮亮. 含硅9Cr-ODS钢设计与性能研究[D]. 合肥: 中国科学技术大学, 2018: 62-65. [10] CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004 [11] SAINI N, MULIK R S, MAHAPATRA M M. Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel[J]. Materials Science and Engineering:A, 2018, 716: 179-188. doi: 10.1016/j.msea.2018.01.035 [12] BYUN T S, HOELZER D T, KIM J H, et al. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys[J]. Journal of Nuclear Materials, 2017, 484: 157-167. doi: 10.1016/j.jnucmat.2016.12.004 [13] ZHAO Y Y, LIANG M T, ZHANG Z Y, et al. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450℃-550℃[J]. Journal of Nuclear Materials, 2018, 501: 200-207. doi: 10.1016/j.jnucmat.2018.01.039