高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热时效对含硅铁素体/马氏体钢力学性能的影响

刘肖 王辉 肖军 孙永铎 刘帅洋 张金钰

刘肖, 王辉, 肖军, 孙永铎, 刘帅洋, 张金钰. 热时效对含硅铁素体/马氏体钢力学性能的影响[J]. 核动力工程, 2023, 44(S1): 147-151. doi: 10.13832/j.jnpe.2023.S1.0147
引用本文: 刘肖, 王辉, 肖军, 孙永铎, 刘帅洋, 张金钰. 热时效对含硅铁素体/马氏体钢力学性能的影响[J]. 核动力工程, 2023, 44(S1): 147-151. doi: 10.13832/j.jnpe.2023.S1.0147
Liu Xiao, Wang Hui, Xiao Jun, Sun Yongduo, Liu Shuaiyang, Zhang Jinyu. Effect of Thermal Aging on Mechanical Properties of Silicon-containing Ferritic/Martensitic Steel[J]. Nuclear Power Engineering, 2023, 44(S1): 147-151. doi: 10.13832/j.jnpe.2023.S1.0147
Citation: Liu Xiao, Wang Hui, Xiao Jun, Sun Yongduo, Liu Shuaiyang, Zhang Jinyu. Effect of Thermal Aging on Mechanical Properties of Silicon-containing Ferritic/Martensitic Steel[J]. Nuclear Power Engineering, 2023, 44(S1): 147-151. doi: 10.13832/j.jnpe.2023.S1.0147

热时效对含硅铁素体/马氏体钢力学性能的影响

doi: 10.13832/j.jnpe.2023.S1.0147
详细信息
    作者简介:

    刘 肖(1989—),女,硕士研究生,现主要从事反应堆结构材料工艺与性能方面的研究,E-mail: 18280008908@126.com

  • 中图分类号: TL334

Effect of Thermal Aging on Mechanical Properties of Silicon-containing Ferritic/Martensitic Steel

  • 摘要: 对4种不同Si含量的9Cr-铁素体/马氏体(F/M)钢开展550℃热时效实验(最长时间为5000 h),测试其屈服强度(Rp0.2)、抗拉强度(Rm)、延伸率(A)等力学性能,并结合扫描电子显微镜/能谱仪(SEM/EDS)、透射电子显微镜(TEM)表征手段,研究微观组织结构与力学性能之间的关联规律。结果表明:添加少量的Si可以提高9Cr-F/M钢的强度,且Si含量(质量分数)为0.7%时,Rp0.2Rm达到最大值,但Si的添加会促进Laves相析出;时效时间(t)对9Cr-F/M钢的塑性有显著影响,当t<2500 h时,9Cr-F/M钢的塑性变化不大,但当Si含量提高至1.0%,经5000 h时效后塑性大幅下降,这归因于Laves相在晶界的析出和长大。

     

  • 图  1  拉伸性能测试样品 mm

    Figure  1.  Tensile Test Sample

    图  2  不同Si含量F/M钢时效前与5000 h后样品的TEM形貌

    Figure  2.  TEM Image of F/M Steel Sample with Different Si Content before Aging and after 5000 h

    图  3  马氏体板条宽度随t变化曲线

    Figure  3.  Variation Curve of Martensitic Slat With t

    图  4  Rp0.2t变化曲线

    Figure  4.  Variation Curve of Rp0.2 with t

    图  5  Rmt变化曲线

    Figure  5.  Variation Curve of Rm with t

    图  6  At变化曲线

    Figure  6.  Variation Curve of A with t

    表  1  不同Si含量F/M钢在不同t的力学性能

    Table  1.   Mechanical Properties of F/M Steel with Different Si Content at Different t

    序号Si含量/%t /h弹性模量(E)/MPaRp0.2/MPaRm/MPaA/%断面收缩率(Z)/%
    10021184264575520.874.2
    2100020481965574813.473.4
    3250020653566075916.972.2
    4500020564865275717.168.1
    50.4021646861373518.270.8
    6100020483261973219.071.9
    7250020668561473120.469.4
    8500020672857971119.367.0
    90.7021754470380617.969.3
    10100021052271681616.867.9
    11250020877169981217.866.0
    12500021074570081616.263.4
    131.0021469065778918.968.4
    14250020701966679219.264.0
    15500020974166880913.257.5
    下载: 导出CSV
  • [1] 李辉,李烁,史春丽,等. 超低碳低活化铁素体/马氏体钢的低温韧性[J]. 金属热处理,2018, 43(1): 22-27. doi: 10.13251/j.issn.0254-6051.2018.01.005
    [2] ALLEN T R, KAOUMI D, WHARRY J P, et al. Characterization of microstructure and property evolution in advanced cladding and duct: materials exposed to high dose and elevated temperature[J]. Journal of Materials Research, 2015, 30(9): 1246-1274. doi: 10.1557/jmr.2015.99
    [3] KLUEH R L. Ferritic/martensitic steels for advanced nuclear reactors[J]. Transactions of the Indian Institute of Metals, 2009, 62(2): 81-87. doi: 10.1007/s12666-009-0011-3
    [4] ZHANG J S. A review of steel corrosion by liquid lead and lead–bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. doi: 10.1016/j.corsci.2009.03.013
    [5] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [6] SCHROER C, TSISAR V, DURAND A, et al. Corrosion in iron and steel T91 caused by flowing lead-bismuth eutectic at 400℃ and 10-7 mass% dissolved oxygen[J]. Journal of Nuclear Engineering and Radiation Science, 2019, 5(1): 011006. doi: 10.1115/1.4040937
    [7] WEISENBURGER A, SCHROER C, JIANU A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 2011, 415(3): 260-269. doi: 10.1016/j.jnucmat.2011.04.028
    [8] 丁君艳. 9-12%Cr铁素体/马氏体耐热钢的显微组织和力学性能研究[D]. 淄博: 山东理工大学, 2008: 39.
    [9] 宋亮亮. 含硅9Cr-ODS钢设计与性能研究[D]. 合肥: 中国科学技术大学, 2018: 62-65.
    [10] CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004
    [11] SAINI N, MULIK R S, MAHAPATRA M M. Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel[J]. Materials Science and Engineering:A, 2018, 716: 179-188. doi: 10.1016/j.msea.2018.01.035
    [12] BYUN T S, HOELZER D T, KIM J H, et al. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys[J]. Journal of Nuclear Materials, 2017, 484: 157-167. doi: 10.1016/j.jnucmat.2016.12.004
    [13] ZHAO Y Y, LIANG M T, ZHANG Z Y, et al. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450℃-550℃[J]. Journal of Nuclear Materials, 2018, 501: 200-207. doi: 10.1016/j.jnucmat.2018.01.039
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  18
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-03-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回