高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金在硼、锂介质中的缝隙腐蚀行为分析

赵宇翔 徐祺 熊茹 郭相龙 刘肖

赵宇翔, 徐祺, 熊茹, 郭相龙, 刘肖. 钛合金在硼、锂介质中的缝隙腐蚀行为分析[J]. 核动力工程, 2023, 44(S1): 152-157. doi: 10.13832/j.jnpe.2023.S1.0152
引用本文: 赵宇翔, 徐祺, 熊茹, 郭相龙, 刘肖. 钛合金在硼、锂介质中的缝隙腐蚀行为分析[J]. 核动力工程, 2023, 44(S1): 152-157. doi: 10.13832/j.jnpe.2023.S1.0152
Zhao Yuxiang, Xu Qi, Xiong Ru, Guo Xianglong, Liu Xiao. Analysis of Crevice Corrosion behavior of Titanium Alloy in Boron and Lithium Media[J]. Nuclear Power Engineering, 2023, 44(S1): 152-157. doi: 10.13832/j.jnpe.2023.S1.0152
Citation: Zhao Yuxiang, Xu Qi, Xiong Ru, Guo Xianglong, Liu Xiao. Analysis of Crevice Corrosion behavior of Titanium Alloy in Boron and Lithium Media[J]. Nuclear Power Engineering, 2023, 44(S1): 152-157. doi: 10.13832/j.jnpe.2023.S1.0152

钛合金在硼、锂介质中的缝隙腐蚀行为分析

doi: 10.13832/j.jnpe.2023.S1.0152
基金项目: 国防科工局重点实验室稳定支持计划项目(K909001201804)
详细信息
    作者简介:

    赵宇翔(1986—),男,副研究员,现从事反应堆结构材料腐蚀与防护研究工作,Email:49650199@qq.com

  • 中图分类号: TL341

Analysis of Crevice Corrosion behavior of Titanium Alloy in Boron and Lithium Media

  • 摘要: 钛合金作为新型蒸汽发生器的主要结构材料,其耐缝隙腐蚀性能受到关注,而钛合金在硼、锂介质中的缝隙腐蚀行为研究较少。本文采用微型腐蚀回路对钛合金TA16和TA17在硼、锂介质中的5000 h缝隙腐蚀行为进行了研究,获得了2种材料的缝隙腐蚀敏感性,并对试验后钛合金氧化膜成分和结构进行了分析。结果表明:在缝隙腐蚀模拟件上未观察到缝隙腐蚀现象,TA16、TA17在硼、锂介质中对缝隙腐蚀不敏感;模拟件缝隙内、外的氧化物存在一定差异,缝隙外的颗粒状微晶钛铁矿(FeTiO3)与钛合金缝隙腐蚀无关。

     

  • 图  1  5000 h腐蚀试验后模拟件表面形貌

    Figure  1.  Morphology of Crevice Specimen after 5000 h Corrosion Test

    图  2  5000 h腐蚀试验后模拟件表面EDS分析区域

    Figure  2.  Region of EDS Analysis of Crevice Specimen after 5000 h Corrosion Test

    图  3  5000 h腐蚀试验后模拟件表面XRD结果

    Figure  3.  XRD Results of Crevice Specimen Surface after 5000 h Corrosion Test

    图  4  5000 h腐蚀试验后模拟件能谱结果

    Figure  4.  Energy Spectrum of Crevice Specimen after 5000 h Corrosion Test

    图  5  5000 h腐蚀试验后模拟件TEM明场像

    Figure  5.  TEM Morphology of Crevice Specimen after 5000 h Corrosion Test

    图  6  TA16、TA17的腐蚀增重规律

    Figure  6.  Corrosion and Weight Gain of TA16 and TA17

    图  7  TA16、TA17的腐蚀速率变化趋势

    Figure  7.  Changing Trend of Corrosion Rates of TA16 and TA17       

    图  8  钛合金缝隙腐蚀过程示意图[8]

    Figure  8.  Schematic Diagram of Crevice Corrosion of Titauium Alloy

    表  1  化学成分

    Table  1.   Chemical Composition

    TA16 元素 Al Zr V C O N H Fe Si Ti
    质量分数/% 1.8~2.5 2.0~3.0 ≤0.07 ≤0.13 ≤0.04 ≤0.006 0.25 ≤0.12 基体
    TA17 元素 Al Zr V C O N H Fe Si Ti
    质量分数/% 3.8~5.0 ≤0.30 1.4~2.5 ≤0.04 ≤0.15 ≤0.04 ≤0.006 0.25 ≤0.12 基体
    下载: 导出CSV

    表  2  5000 h腐蚀试验后模拟件表面氧化物成分 %

    Table  2.   Surface Oxide Composition of Crevice Specimen after 5000 h Corrosion Test %

    元素缝隙内缝隙外
    谱图1谱图2谱图3谱图4谱图5谱图6谱图7谱图8
    O28.2524.0045.3847.4838.1851.1844.5932.87
    Al2.562.730.340.940.000.180.130.16
    Ti67.4871.3252.5050.5731.6747.4254.3636.04
    V1.721.951.140.810.000.510.670.47
    Cr0.000.000.000.000.000.000.000.00
    Fe0.000.000.630.2030.150.720.2430.47
    总量100100100100100100100100
    下载: 导出CSV
  • [1] WANG Z G, ZU X T, LIAN J, et al. Characterization of oxide layers on Ti–2Al–2.5Zr and Ti–4Al–2V alloys oxidized at 300℃ in a neutral water steam[J]. Journal of Alloys and Compounds, 2004, 384(1-2): 93-97. doi: 10.1016/j.jallcom.2004.04.084
    [2] ZU X T, FENG X D, WANG Z G, et al. Characterisation of the oxide scale on a Ti–2Al–2.5Zr alloy with and without pre-oxidation in an alkaline steam at 300℃[J]. Surface and Coatings Technology, 2001, 148(2-3): 216-220. doi: 10.1016/S0257-8972(01)01358-5
    [3] 罗强,王理,陈新,等. TA16和TA17钛合金在高温高压水中的腐蚀行为研究[J]. 轻金属,2012(2): 56-59. doi: 10.13662/j.cnki.qjs.2012.02.007
    [4] RAJENDRAN N, NISHIMURA T. Crevice corrosion monitoring of titanium and its alloys using microelectrodes[J]. Materials and Corrosion, 2007, 58(5): 334-339. doi: 10.1002/maco.200604022
    [5] YAN L, NOËL J J, SHOESMITH D W. Hydrogen absorption into grade-2 titanium during crevice corrosion[J]. Electrochimica Acta, 2011, 56(4): 1810-1822. doi: 10.1016/j.electacta.2010.11.017
    [6] NISHIMURA T. Corrosion resistance of molybdenum-containing titanium alloy for overpack in simulating underground environment[J]. Journal of Nuclear Materials, 2009, 385(3): 495-503. doi: 10.1016/j.jnucmat.2008.09.045
    [7] SELVA S, BIGNON Q, RAYNAL A, et al. Corrosion of titanium alloys in pressurised water at 300℃: kinetics and modelling[J]. Corrosion Science, 2021, 190: 109646. doi: 10.1016/j.corsci.2021.109646
    [8] NOËL J J, EBRAHIMI N, SHOESMITH D W. Corrosion of titanium and titanium alloys[M]//WANDELT K. Encyclopedia of Interfacial Chemistry. Amsterdam: Elsevier, 2018: 192-200.
    [9] BIGNON Q, MARTIN F, AUZOUX Q, et al. Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor[J]. Corrosion Science, 2019, 150: 32-41. doi: 10.1016/j.corsci.2019.01.020
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  48
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-04-27
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回