Analysis of Crevice Corrosion behavior of Titanium Alloy in Boron and Lithium Media
-
摘要: 钛合金作为新型蒸汽发生器的主要结构材料,其耐缝隙腐蚀性能受到关注,而钛合金在硼、锂介质中的缝隙腐蚀行为研究较少。本文采用微型腐蚀回路对钛合金TA16和TA17在硼、锂介质中的5000 h缝隙腐蚀行为进行了研究,获得了2种材料的缝隙腐蚀敏感性,并对试验后钛合金氧化膜成分和结构进行了分析。结果表明:在缝隙腐蚀模拟件上未观察到缝隙腐蚀现象,TA16、TA17在硼、锂介质中对缝隙腐蚀不敏感;模拟件缝隙内、外的氧化物存在一定差异,缝隙外的颗粒状微晶钛铁矿(FeTiO3)与钛合金缝隙腐蚀无关。Abstract: As the main structural material of new steam generator (SG), the crevice corrosion behavior of titanium alloy has been concerned. However, the crevice corrosion resistance of titanium alloy in boron and lithium media is less studied. In this paper, the crevice corrosion behavior of titanium alloys TA16 and TA17 in boron and lithium media for 5000 h was studied by means of micro corrosion loop. The crevice corrosion sensitivity of the two materials was obtained, and the composition and structure of the oxide film of titanium alloys were analyzed. The results show that no crevice corrosion is observed on the sample, which indicates that TA16 and TA17 are insensitive to crevice corrosion in boron and lithium media. There are some differences between the oxides inside and outside the crevice of titanium alloys, and the granular microcrystal FeTiO3 outside the crevice is independent of crevice corrosion of titanium alloy.
-
Key words:
- Titanium alloy /
- Boron/Lithium medium /
- Crevice /
- Corrosion /
- Oxide
-
图 8 钛合金缝隙腐蚀过程示意图[8]
Figure 8. Schematic Diagram of Crevice Corrosion of Titauium Alloy
表 1 化学成分
Table 1. Chemical Composition
TA16 元素 Al Zr V C O N H Fe Si Ti 质量分数/% 1.8~2.5 2.0~3.0 ≤0.07 ≤0.13 ≤0.04 ≤0.006 0.25 ≤0.12 基体 TA17 元素 Al Zr V C O N H Fe Si Ti 质量分数/% 3.8~5.0 ≤0.30 1.4~2.5 ≤0.04 ≤0.15 ≤0.04 ≤0.006 0.25 ≤0.12 基体 表 2 5000 h腐蚀试验后模拟件表面氧化物成分 %
Table 2. Surface Oxide Composition of Crevice Specimen after 5000 h Corrosion Test %
元素 缝隙内 缝隙外 谱图1 谱图2 谱图3 谱图4 谱图5 谱图6 谱图7 谱图8 O 28.25 24.00 45.38 47.48 38.18 51.18 44.59 32.87 Al 2.56 2.73 0.34 0.94 0.00 0.18 0.13 0.16 Ti 67.48 71.32 52.50 50.57 31.67 47.42 54.36 36.04 V 1.72 1.95 1.14 0.81 0.00 0.51 0.67 0.47 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 0.00 0.00 0.63 0.20 30.15 0.72 0.24 30.47 总量 100 100 100 100 100 100 100 100 -
[1] WANG Z G, ZU X T, LIAN J, et al. Characterization of oxide layers on Ti–2Al–2.5Zr and Ti–4Al–2V alloys oxidized at 300℃ in a neutral water steam[J]. Journal of Alloys and Compounds, 2004, 384(1-2): 93-97. doi: 10.1016/j.jallcom.2004.04.084 [2] ZU X T, FENG X D, WANG Z G, et al. Characterisation of the oxide scale on a Ti–2Al–2.5Zr alloy with and without pre-oxidation in an alkaline steam at 300℃[J]. Surface and Coatings Technology, 2001, 148(2-3): 216-220. doi: 10.1016/S0257-8972(01)01358-5 [3] 罗强,王理,陈新,等. TA16和TA17钛合金在高温高压水中的腐蚀行为研究[J]. 轻金属,2012(2): 56-59. doi: 10.13662/j.cnki.qjs.2012.02.007 [4] RAJENDRAN N, NISHIMURA T. Crevice corrosion monitoring of titanium and its alloys using microelectrodes[J]. Materials and Corrosion, 2007, 58(5): 334-339. doi: 10.1002/maco.200604022 [5] YAN L, NOËL J J, SHOESMITH D W. Hydrogen absorption into grade-2 titanium during crevice corrosion[J]. Electrochimica Acta, 2011, 56(4): 1810-1822. doi: 10.1016/j.electacta.2010.11.017 [6] NISHIMURA T. Corrosion resistance of molybdenum-containing titanium alloy for overpack in simulating underground environment[J]. Journal of Nuclear Materials, 2009, 385(3): 495-503. doi: 10.1016/j.jnucmat.2008.09.045 [7] SELVA S, BIGNON Q, RAYNAL A, et al. Corrosion of titanium alloys in pressurised water at 300℃: kinetics and modelling[J]. Corrosion Science, 2021, 190: 109646. doi: 10.1016/j.corsci.2021.109646 [8] NOËL J J, EBRAHIMI N, SHOESMITH D W. Corrosion of titanium and titanium alloys[M]//WANDELT K. Encyclopedia of Interfacial Chemistry. Amsterdam: Elsevier, 2018: 192-200. [9] BIGNON Q, MARTIN F, AUZOUX Q, et al. Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor[J]. Corrosion Science, 2019, 150: 32-41. doi: 10.1016/j.corsci.2019.01.020