高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最终退火温度对N36合金管材微观结构和性能的影响

贾玉振 邱军 程竹青 杨忠波

贾玉振, 邱军, 程竹青, 杨忠波. 最终退火温度对N36合金管材微观结构和性能的影响[J]. 核动力工程, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163
引用本文: 贾玉振, 邱军, 程竹青, 杨忠波. 最终退火温度对N36合金管材微观结构和性能的影响[J]. 核动力工程, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163
Jia Yuzhen, Qiu Jun, Cheng Zhuqing, Yang Zhongbo. Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube[J]. Nuclear Power Engineering, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163
Citation: Jia Yuzhen, Qiu Jun, Cheng Zhuqing, Yang Zhongbo. Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube[J]. Nuclear Power Engineering, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163

最终退火温度对N36合金管材微观结构和性能的影响

doi: 10.13832/j.jnpe.2023.S1.0163
基金项目: 中核集团集中研发项目([2019]268)
详细信息
    作者简介:

    贾玉振(1988—),男,副研究员,现从事反应堆燃料及材料研究,E-mail: jaja880816@aliyun.com

  • 中图分类号: TL341

Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube

  • 摘要: 为了对N36合金管材的微观结构和应用性能进行优化和调控,通过分析不同最终退火温度(520~560℃)下N36合金管材的性能数据,研究了最终退火温度对N36合金管材微观结构和性能的影响。经过研究发现,不同最终退火温度对于N36合金管材中的第二相粒子影响不大,主要影响N36合金管材的再结晶程度和晶粒尺寸,最终退火温度越高,则N36合金管材的再结晶程度越高,晶粒尺寸越大。随着最终退火温度升高,N36合金管材的室温和高温轴向和环向的强度明显降低,同时延伸率明显升高,主要是最终退火工艺对N36合金管材再结晶程度和晶粒尺寸的影响所造成的。随着最终退火温度升高,N36合金管材耐腐蚀性能提高,560℃最终退火温度的N36合金管材耐腐蚀性能明显优于其他管材,主要是560℃最终退火温度的N36合金管材再结晶程度最高所造成的。

     

  • 图  1  不同退火温度N36合金管材中第二相粒子分布

    Figure  1.  Distribution of Second Phase Particles of N36 Alloy Tube with Different Annealing Temperatures

    图  2  第二相粒子TEM物相分析

    Figure  2.  Phase Analysis of Second Phase Particles by TEM

    图  3  再结晶情况EBSD图

    Figure  3.  EBSD Image of Recrytallization

    图  4  不同退火温度N36合金管材的室温轴向拉伸性能

    Figure  4.  Room Temperature Axial Tensile Properties of N36 Alloy Tube with Different Annealing Temperatures

    图  5  不同退火温度N36合金管材的350℃轴向拉伸性能

    Figure  5.  350°C Axial Tensile Properties of N36 Alloy Tube with Different Annealing Temperatures

    图  6  不同退火温度N36合金管材的室温环向拉伸性能

    Figure  6.  Room Temperature Circumferential Tensile Properties of N36 Alloy Tube with Different Annealing Temperatures

    图  7  不同退火温度N36合金管材的350℃环向拉伸性能

    Figure  7.  350°C Circumferential Tensile Properties of N36 Alloy Tube with Different Annealing Temperatures

    图  8  不同退火温度N36合金管材的360°C、18.3 MPa纯水长期耐腐蚀性能

    Figure  8.  Long-term Corrosion Resistance of N36 Alloy Tube with Different Annealing Temperatures in Pure Water at 360°C and 18.3 MPa

    表  1  N36合金化学成分

    Table  1.   Chemical Composition of N36 Alloy

    元素SnNbFeOZr
    质量分数/%0.851.000.280.10Bal.
    下载: 导出CSV

    表  2  不同退火温度N36合金管材再结晶度和晶粒尺寸

    Table  2.   Recrystallization Fraction and Grain Size of N36 Alloy Tube With Different Annealing Temperatures

    退火温度/℃再结晶度/%晶粒尺寸/μm
    52079.41.96
    54084.32.10
    56093.32.33
    下载: 导出CSV
  • [1] SABOL G, COMSTOCK R J, WEINER R A, et al. In-reactor corrosion performance of ZIRLO and zircaloy-4[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 724-743.
    [2] NOVIKOV V V, MARKELOV V A, TSELISHCHEV A V, et al. Structure-phase changes and corrosion behavior of E110 and E635 claddings of fuels in water cooled reactors[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 991-997. doi: 10.1080/18811248.2006.9711187
    [3] JEONG Y H, PARK S Y, LEE M H, et al. Out-of-pile and in-pile perfomance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 977-983. doi: 10.1080/18811248.2006.9711185
    [4] 赵文金,周邦新,苗志,等. 我国高性能锆合金的发展[J]. 原子能科学技术,2005, 39(S1): 2-9.
    [5] ANADA H, NOMOTO K, SHIDA Y. Corrosion behavior of zircaloy-4 sheets produced under various hot-rolling and annealing conditions[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 307-327.
    [6] GARDE A M. Enhancement of aqueous corrosion of zircaloy-4 due to hydride precipitation at the metal-oxide interface[C]//Zirconium in the Nuclear Industry: Ninth International Symposium. Philadelphia: ASTM International, 1991: 566-591.
    [7] SCHEMEL J J, CHARQUET D, WADIER J F. Influence of the manufacturing process on the corrosion resistance of zircaloy-4 cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 141-152.
    [8] RUDLING P, PETTERSSON H, ANDERSSON T, et al. Corrosion performance of zircaloy-2 and zircaloy-4 PWR fuel cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 213-226.
    [9] YANG Z B, LIAO J J, QIU S Y, et al. Effect of final annealing temperature on corrosion resistance of sza-6 zirconium alloy cladding tubes[J]. Materials Science Forum, 2019, 944: 488-498. doi: 10.4028/www.scientific.net/MSF.944.488
    [10] PARK J Y, JEONG Y H, JUNG Y H. Effects of precipitation characteristics on the out-of-pile corrosion behavior of niobium-containing zirconium alloys[J]. Metals and Materials International, 2001, 7(5): 447-455. doi: 10.1007/BF03027086
    [11] BAEK J H, JEONG Y H, KIM I S. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy[J]. Journal of Nuclear Materials, 2000, 280(2): 235-245. doi: 10.1016/S0022-3115(99)00288-3
    [12] MARDON J P, CHARQUET D, SENEVAT J. et al. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy[C]//Zirconium in the Nuclear Industry: Twelfth International Symposium. West Conshohocken: ASTM International, 2000: 505-524.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  62
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-05-10
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回