Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube
-
摘要: 为了对N36合金管材的微观结构和应用性能进行优化和调控,通过分析不同最终退火温度(520~560℃)下N36合金管材的性能数据,研究了最终退火温度对N36合金管材微观结构和性能的影响。经过研究发现,不同最终退火温度对于N36合金管材中的第二相粒子影响不大,主要影响N36合金管材的再结晶程度和晶粒尺寸,最终退火温度越高,则N36合金管材的再结晶程度越高,晶粒尺寸越大。随着最终退火温度升高,N36合金管材的室温和高温轴向和环向的强度明显降低,同时延伸率明显升高,主要是最终退火工艺对N36合金管材再结晶程度和晶粒尺寸的影响所造成的。随着最终退火温度升高,N36合金管材耐腐蚀性能提高,560℃最终退火温度的N36合金管材耐腐蚀性能明显优于其他管材,主要是560℃最终退火温度的N36合金管材再结晶程度最高所造成的。Abstract: In order to optimize and control the microstructure and properties of N36 alloy tube, the effect of final annealing temperature on the microstructure and properties of N36 alloy tube was studied by analyzing the performance data of N36 alloy tube at different final annealing temperatures (520~560°C). The results show that different final annealing temperatures mainly affect the recrystallization fraction and grain size of the N36 alloy tubes, while have little influence on the second phase particles. The higher the final annealing temperature, the higher the recrystallization fraction and the larger the grain size of N36 alloy tube. With the increase of final annealing temperature, the room temperature and high temperature axial and circumferential tensile strength decreased and the elongation increased significantly, which was mainly caused by the influence of final annealing process on the recrystallization fraction and grain size of N36 alloy tube. With the increase of final annealing temperature, the corrosion resistance of N36 alloy tube is improved, and the corrosion resistance of N36 alloy tube with final annealing temperature of 560°C is obviously better than other tubes, mainly due to the highest recrystallization fraction of N36 alloy pipe with final annealing temperature of 560°C.
-
Key words:
- N36 alloy tube /
- Annealing temperature /
- Microstructure /
- Property
-
表 1 N36合金化学成分
Table 1. Chemical Composition of N36 Alloy
元素 Sn Nb Fe O Zr 质量分数/% 0.85 1.00 0.28 0.10 Bal. 表 2 不同退火温度N36合金管材再结晶度和晶粒尺寸
Table 2. Recrystallization Fraction and Grain Size of N36 Alloy Tube With Different Annealing Temperatures
退火温度/℃ 再结晶度/% 晶粒尺寸/μm 520 79.4 1.96 540 84.3 2.10 560 93.3 2.33 -
[1] SABOL G, COMSTOCK R J, WEINER R A, et al. In-reactor corrosion performance of ZIRLO and zircaloy-4[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 724-743. [2] NOVIKOV V V, MARKELOV V A, TSELISHCHEV A V, et al. Structure-phase changes and corrosion behavior of E110 and E635 claddings of fuels in water cooled reactors[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 991-997. doi: 10.1080/18811248.2006.9711187 [3] JEONG Y H, PARK S Y, LEE M H, et al. Out-of-pile and in-pile perfomance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 977-983. doi: 10.1080/18811248.2006.9711185 [4] 赵文金,周邦新,苗志,等. 我国高性能锆合金的发展[J]. 原子能科学技术,2005, 39(S1): 2-9. [5] ANADA H, NOMOTO K, SHIDA Y. Corrosion behavior of zircaloy-4 sheets produced under various hot-rolling and annealing conditions[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 307-327. [6] GARDE A M. Enhancement of aqueous corrosion of zircaloy-4 due to hydride precipitation at the metal-oxide interface[C]//Zirconium in the Nuclear Industry: Ninth International Symposium. Philadelphia: ASTM International, 1991: 566-591. [7] SCHEMEL J J, CHARQUET D, WADIER J F. Influence of the manufacturing process on the corrosion resistance of zircaloy-4 cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 141-152. [8] RUDLING P, PETTERSSON H, ANDERSSON T, et al. Corrosion performance of zircaloy-2 and zircaloy-4 PWR fuel cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 213-226. [9] YANG Z B, LIAO J J, QIU S Y, et al. Effect of final annealing temperature on corrosion resistance of sza-6 zirconium alloy cladding tubes[J]. Materials Science Forum, 2019, 944: 488-498. doi: 10.4028/www.scientific.net/MSF.944.488 [10] PARK J Y, JEONG Y H, JUNG Y H. Effects of precipitation characteristics on the out-of-pile corrosion behavior of niobium-containing zirconium alloys[J]. Metals and Materials International, 2001, 7(5): 447-455. doi: 10.1007/BF03027086 [11] BAEK J H, JEONG Y H, KIM I S. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy[J]. Journal of Nuclear Materials, 2000, 280(2): 235-245. doi: 10.1016/S0022-3115(99)00288-3 [12] MARDON J P, CHARQUET D, SENEVAT J. et al. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy[C]//Zirconium in the Nuclear Industry: Twelfth International Symposium. West Conshohocken: ASTM International, 2000: 505-524.