高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

12Cr-1.5W-0.6Si合金管材长期高温蠕变性能研究

何琨 潘钱付 李刚 梁波

何琨, 潘钱付, 李刚, 梁波. 12Cr-1.5W-0.6Si合金管材长期高温蠕变性能研究[J]. 核动力工程, 2023, 44(S1): 176-180. doi: 10.13832/j.jnpe.2023.S1.0176
引用本文: 何琨, 潘钱付, 李刚, 梁波. 12Cr-1.5W-0.6Si合金管材长期高温蠕变性能研究[J]. 核动力工程, 2023, 44(S1): 176-180. doi: 10.13832/j.jnpe.2023.S1.0176
He Kun, Pan Qianfu, Li Gang, Liang Bo. Study on Long-Term High Temperature Creep Properties of 12Cr-1.5W-0.6Si Alloy Pipe[J]. Nuclear Power Engineering, 2023, 44(S1): 176-180. doi: 10.13832/j.jnpe.2023.S1.0176
Citation: He Kun, Pan Qianfu, Li Gang, Liang Bo. Study on Long-Term High Temperature Creep Properties of 12Cr-1.5W-0.6Si Alloy Pipe[J]. Nuclear Power Engineering, 2023, 44(S1): 176-180. doi: 10.13832/j.jnpe.2023.S1.0176

12Cr-1.5W-0.6Si合金管材长期高温蠕变性能研究

doi: 10.13832/j.jnpe.2023.S1.0176
基金项目: 核技术创新联合基金(U1967211)
详细信息
    作者简介:

    何 琨(1984—),女,副研究员,硕士研究生,主要研究方向为核燃料及材料、金属材料,E-mail: kunhe14@163.com

  • 中图分类号: TG142.1

Study on Long-Term High Temperature Creep Properties of 12Cr-1.5W-0.6Si Alloy Pipe

  • 摘要: 为获得铁素体/马氏体合金的高温蠕变性能,采用蠕变试验装置对12Cr-1.5W-0.6Si合金管材开展了450、500和550℃在空气环境下的蠕变试验,获得了蠕变时间-应变曲线和稳态蠕变速率。研究表明:合金的应力指数较高,通过引入门槛应力获得真实应力指数,其蠕变机制是位错攀移机制;经过550℃、160 MPa、3145 h蠕变试验后,第二相仍沿晶界分布,但合金出现了板条晶粒宽化、第二相颗粒粗化现象,且长时间蠕变对微观组织的影响更为显著。

     

  • 图  1  12Cr-1.5W-0.6Si合金在550℃下不同应力的蠕变曲线      

    Figure  1.  Creep Curves of 12Cr-1.5W-0.6Si under Various Stress Levels at 550°C

    图  2  12Cr-1.5W-0.6Si合金在550℃下的lnε-lnσ关系曲线

    Figure  2.  lnε-lnσ Curve of 12Cr-1.5W-0.6Si at 550°C

    图  3  在550℃下,当n=1、3、5时12Cr-1.5W-0.6Si合金的$ {\varepsilon ^{1/n}} $σ关系曲线

    Figure  3.  $ {\varepsilon ^{1/n}} $σ Curve of 12Cr-1.5W-0.6Si at 550°C (n=1, 3 and 5)       

    图  4  12Cr-1.5W-0.6Si合金在透射电镜下的微观组织和晶粒尺寸统计

    Figure  4.  TEM Microstructure and Grain Size Statistics of 12Cr-1.5W-0.6Si

    图  5  12Cr-1.5W-0.6Si合金在透射电镜下的微观组织和第二相颗粒统计结果

    Figure  5.  TEM Microstructure of 12Cr-1.5W-0.6Si and Statistical Results of Precipitated Phase Particles

    图  6  12Cr-1.5W-0.6Si合金在不同蠕变试验条件下的微观组织和板条晶粒尺寸统计结果

    Figure  6.  TEM Microstructure and Lath Size Statistics of 12Cr-1.5W-0.6Si under Different Creep Tests

    表  1  成品管材蠕变试验参数及试验结果

    Table  1.   Creep Test Parameters and Test Results of Finished Pipe

    温度/
    屈服强
    度/MPa
    应力/
    MPa
    屈服强
    度占比/%
    蠕变
    时间/h
    ε/h−1备注
    550396.53609146.60×10−2应变11%断裂
    200503111.93×10−5未断裂
    180454754.90×10−6未断裂
    1604031459.63×10−7未断裂
    500463.5430930.121.80×10−2应变11.5%断裂
    280604598.11×10−5未断裂
    240524405.07×10−6未断裂
    2204711097.25×10−7未断裂
    450493.5450910.111.18×10−3应变11%断裂
    340694592.13×10−5未断裂
    300614604.81×10−6未断裂
    2605310081.12×10−6未断裂
    下载: 导出CSV

    表  2  蠕变前后12Cr-1.5W-0.6Si合金板条晶粒尺寸和第二相尺寸对比

    Table  2.   Lath Grain Size and Precipitated Phase Size Statistics of 12Cr-1.5W-0.6Si before and after Creep

    选取试样条件板条晶粒
    宽度/nm
    第二相颗粒
    半径/nm
    第二相数
    密度/m−3
    原始态54.3±2.918.3±0.76.82×1019
    500℃/240 MPa/440 h57.2±1.522.6±1.46.16×1019
    550℃/180 MPa/475 h65.8±1.325.7±2.05.67×1019
    550℃/160 MPa/3145 h78.9±2.438.9±0.64.73×1019
    下载: 导出CSV
  • [1] QIAO Y Q, LI M Y, GUO X P. Development of silicide coatings over Nb-NbCr2 alloy and their oxidation behavior at 1250℃[J]. Surface and Coatings Technology, 2014, 258: 921-930. doi: 10.1016/j.surfcoat.2014.07.058
    [2] CHENG J C, YI S, PARK J S. Oxidation behavior of Nb-Si-B alloys with the NbSi2 coating layer formed by a pack cementation technique[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 103-109. doi: 10.1016/j.ijrmhm.2013.02.010
    [3] PENG L, TAKIZAWA S, IKEDA K I, et al. Effect of Si on the stability of NbCr2 laves phase in Cr-Mo-Nb system[J]. Intermetallics, 2019, 110: 106457. doi: 10.1016/j.intermet.2019.03.020
    [4] XUE Y L, LI S M, WU Y T, et al. Strengthening and toughening effects in laves phase Cr2Ta/Cr in-situ composites by Si additions[J]. Vacuum, 2020, 174: 109202. doi: 10.1016/j.vacuum.2020.109202
    [5] CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004
    [6] PANDEY A B, MISHRA R S, MAHAJAN Y R. Creep behaviour of an aluminium-silicon carbide particulate composite[J]. Scripta Metallurgica et Materialia, 1990, 24(8): 1565-1570. doi: 10.1016/0956-716X(90)90433-H
    [7] LATHA S, NANDAGOPAL M, SELVI S P, et al. Tensile and creep behaviour of modified 9Cr-1Mo steel cladding tube for fast reactor using metallic fuel[J]. Procedia Engineering, 2014, 86: 71-79. doi: 10.1016/j.proeng.2014.11.013
    [8] KIMURA K, KUSHIMA H, SAWADA K. Long-term creep deformation property of modified 9Cr–1Mo steel[J]. Materials Science and Engineering:A, 2009, 510-511: 58-63. doi: 10.1016/j.msea.2008.04.095
    [9] GUGULOTH K, ROY N. Study on the creep deformation behavior and characterization of 9Cr-1Mo-V-Nb steel at elevated temperatures[J]. Materials Characterization, 2018, 146: 279-298. doi: 10.1016/j.matchar.2018.10.011
    [10] LI Y, MOHAMED F A. An investigation of creep behavior in an SiC-2124 Al composite[J]. Acta Materialia, 1997, 45(11): 4775-4785. doi: 10.1016/S1359-6454(97)00130-4
    [11] YANG C, CAO L F, GAO Y H, et al. Nanostructural Sc-based hierarchy to improve the creep resistance of Al–Cu alloys[J]. Materials & Design, 2020, 186: 108309.
    [12] VO N Q, BAYANSAN D, SANATY-ZADEH A, et al. Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy[J]. Materialia, 2018, 4: 65-69. doi: 10.1016/j.mtla.2018.08.030
    [13] HU X B, LI L, WU X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28(3): 175-182. doi: 10.1016/j.ijfatigue.2005.06.042
    [14] DUDOVA N, KAIBYSHEV R. On the precipitation sequence in a 10%Cr steel under tempering[J]. ISIJ International, 2011, 51(5): 826-831. doi: 10.2355/isijinternational.51.826
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-02-24
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回