高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

U-10Mo/Al燃料组件堆内辐照-热流固耦合行为研究

袁攀 王浩煜 黄山 刘孟龙 岳题 任全耀 秦勉 郑乐乐 郭子萱

袁攀, 王浩煜, 黄山, 刘孟龙, 岳题, 任全耀, 秦勉, 郑乐乐, 郭子萱. U-10Mo/Al燃料组件堆内辐照-热流固耦合行为研究[J]. 核动力工程, 2023, 44(S2): 11-16. doi: 10.13832/j.jnpe.2023.S2.0011
引用本文: 袁攀, 王浩煜, 黄山, 刘孟龙, 岳题, 任全耀, 秦勉, 郑乐乐, 郭子萱. U-10Mo/Al燃料组件堆内辐照-热流固耦合行为研究[J]. 核动力工程, 2023, 44(S2): 11-16. doi: 10.13832/j.jnpe.2023.S2.0011
Yuan Pan, Wang Haoyu, Huang Shan, Liu Menglong, Yue Ti, Ren Quanyao, Qin Mian, Zheng Lele, Guo Zixuan. Research on Thermal-fluid-structure Coupling Behavior for U-10Mo/Al Fuel Assemblies under Irradiation[J]. Nuclear Power Engineering, 2023, 44(S2): 11-16. doi: 10.13832/j.jnpe.2023.S2.0011
Citation: Yuan Pan, Wang Haoyu, Huang Shan, Liu Menglong, Yue Ti, Ren Quanyao, Qin Mian, Zheng Lele, Guo Zixuan. Research on Thermal-fluid-structure Coupling Behavior for U-10Mo/Al Fuel Assemblies under Irradiation[J]. Nuclear Power Engineering, 2023, 44(S2): 11-16. doi: 10.13832/j.jnpe.2023.S2.0011

U-10Mo/Al燃料组件堆内辐照-热流固耦合行为研究

doi: 10.13832/j.jnpe.2023.S2.0011
基金项目: 核反应堆系统设计技术重点实验室基金(2022-JCJQ-LB-003)
详细信息
    作者简介:

    袁 攀(1992—),男,工程师,硕士,现主要从事燃料组件结构设计工作,Email: 744927115@qq.com

  • 中图分类号: TL352

Research on Thermal-fluid-structure Coupling Behavior for U-10Mo/Al Fuel Assemblies under Irradiation

  • 摘要: 为研究U-10Mo/Al燃料组件堆内辐照变形对其机械行为和热工水力行为特性的影响,基于辐照-热流固耦合分析方法,通过将非均匀辐照条件引入到燃料组件辐照-热力耦合行为的三维有限元模拟中,开展了U-10Mo/Al燃料组件堆内辐照环境下的机械和热工水力行为研究,计算分析了辐照条件下燃料组件随时间和空间变化的结构力学场和温度场的分布和演化规律。研究结果表明,U-10Mo/Al燃料组件在流场、温度场、机械力学的耦合作用下展现出典型的机械变形行为,支撑板和燃料元件均产生一定程度的弯曲;燃料组件的温度场表现出典型的非均匀空间分布特性,温度峰值出现在燃料元件肿胀量最大的位置;燃料芯体边角区域包壳、芯体的应力整体高于中心区域和支撑板。

     

  • 图  1  燃料组件结构示意图

    Figure  1.  Schematic Diagram of Fuel Assembly Structure

    图  2  燃料组件几何模型图

    Figure  2.  Geometrical Model of Fuel Assembly

    图  3  燃料元件1的芯体在Y向中心面引入的裂变率

    Figure  3.  Fission Rate Distribution of Pellet in Central Plane of Y Direction for Fuel Element 1

    图  4  流体计算域

    Figure  4.  Computational Domain of Fluid

    图  5  燃料组件辐照80 d时在X方向和Y方向位移图(变形放大5倍)

    Figure  5.  Deformation of Fuel Assembly in X and Y Directions on 80th Day of Irradiation (Deflection Scale Factor: 5)

    图  6  燃料组件辐照80 d时在XY方向沿路径1和路径2的变形       

    Figure  6.  Deformation of Fuel Assembly in X and Y Direction along Path 1 and Path 2 on 80th Day of Irradiation

    图  7  燃料组件辐照80 d时的温度场分布

    Figure  7.  Temperature Field Contour of Fuel Assembly on 80th Day of Irradiation

    图  8  不同燃料元件中心裂变率(Z=−348 mm)

    Figure  8.  Fission Rate at Central Lines of Different Fuel Elements (Z=−348 mm)

    图  9  不同燃料元件中心温度特性(Z=−348 mm)

    Figure  9.  Temperature Profiles at Central Lines of Different Fuel Elements (Z=−348 mm)

    图  10  不同燃料元件厚度变化情况(Z=−348 mm)

    Figure  10.  Variation of Thickness of Different Fuel Elements (Z=−348 mm)

    图  11  辐照80 d后截面的应力分布云图(Z=−348 mm)

    Figure  11.  Stress Contour of Section on 80th Day of Irradiation (Z=−348 mm)

    表  1  边界条件

    Table  1.   Boundary Conditions

    边界条件 数值
    计算域入口速度/(m·s−1 3.7
    入口水温/K 308
    耦合面初始温度/K 320
    出口压力/MPa 0
    系统压力/MPa 1.5
    下载: 导出CSV
  • [1] KIM Y S, HOFMAN G L. Fission product induced swelling of U–Mo alloy fuel[J]. Journal of Nuclear Materials, 2011, 419(1-3): 291-301. doi: 10.1016/j.jnucmat.2011.08.018
    [2] KIM Y S, HOFMAN G L, CHEON J S, et al. Fission induced swelling and creep of U–Mo alloy fuel[J]. Journal of Nuclear Materials, 2013, 437(1-3): 37-46. doi: 10.1016/j.jnucmat.2013.01.346
    [3] YAN F, JIAN X B, DING S R. Effects of UMo irradiation creep on the thermo-mechanical behavior in monolithic UMo/Al fuel plates[J]. Journal of Nuclear Materials, 2019, 524: 209-217. doi: 10.1016/j.jnucmat.2019.07.006
    [4] JO D, PARK J, CHAE H. Development of thermal hydraulic and margin analysis code for steady state forced and natural convective cooling of plate type fuel research reactors[J]. Progress in Nuclear Energy, 2014, 71: 39-51. doi: 10.1016/j.pnucene.2013.11.006
    [5] LI L F, FANG D, ZHANG D L, et al. Flow and heat transfer characteristics in plate-type fuel channels after formation of blisters on fuel elements[J]. Annals of Nuclear Energy, 2019, 134: 284-298. doi: 10.1016/j.anucene.2019.06.030
    [6] KENNE J C, SOLBREKKEN G L. Coupled fluid structure interaction (FSI) modeling of parallel plate assemblies[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: American Society of Mechanical Engineers, 2011: 159-167.
    [7] RICE A. Intercode advanced fuels and cladding comparison using BISON, FRAPCON, and FEMAXI fuel performance codes[D]. Columbia: University of South Carolina, 2015.
    [8] HE Y N, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35.
    [9] LIU R, ZHOU W Z. Multiphysics modeling of novel UO2-BeO sandwich fuel performance in a light water reactor[J]. Annals of Nuclear Energy, 2017, 109: 298-309. doi: 10.1016/j.anucene.2017.05.037
    [10] SCHULTHESS J L, LLOYD W R, RABIN B, et al. Mechanical properties of irradiated U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2019, 515: 91-106. doi: 10.1016/j.jnucmat.2018.12.025
    [11] MARCHBANKS M F. ANS materials databook: ORNL/M-4582[R]. Oak Ridge: Oak Ridge National Lab. , 1995.
    [12] OZALTUN H, SHEN M H H, MEDVEDEV P. Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing[J]. Journal of Nuclear Materials, 2011, 419(1-3): 76-84. doi: 10.1016/j.jnucmat.2011.08.029
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-11
  • 修回日期:  2023-07-22
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回