高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑磁饱和的反应堆控制棒驱动机构混合等效磁网络模型分析

杨云 徐奇伟 赵一舟 付国忠 唐健凯

杨云, 徐奇伟, 赵一舟, 付国忠, 唐健凯. 考虑磁饱和的反应堆控制棒驱动机构混合等效磁网络模型分析[J]. 核动力工程, 2023, 44(S2): 146-152. doi: 10.13832/j.jnpe.2023.S2.0146
引用本文: 杨云, 徐奇伟, 赵一舟, 付国忠, 唐健凯. 考虑磁饱和的反应堆控制棒驱动机构混合等效磁网络模型分析[J]. 核动力工程, 2023, 44(S2): 146-152. doi: 10.13832/j.jnpe.2023.S2.0146
Yang Yun, Xu Qiwei, Zhao Yizhou, Fu Guozhong, Tang Jiankai. Analysis of Mixed Equivalent Magnetic Network Model of Reactor Control Rod Drive Mechanism Considering Magnetic Saturation[J]. Nuclear Power Engineering, 2023, 44(S2): 146-152. doi: 10.13832/j.jnpe.2023.S2.0146
Citation: Yang Yun, Xu Qiwei, Zhao Yizhou, Fu Guozhong, Tang Jiankai. Analysis of Mixed Equivalent Magnetic Network Model of Reactor Control Rod Drive Mechanism Considering Magnetic Saturation[J]. Nuclear Power Engineering, 2023, 44(S2): 146-152. doi: 10.13832/j.jnpe.2023.S2.0146

考虑磁饱和的反应堆控制棒驱动机构混合等效磁网络模型分析

doi: 10.13832/j.jnpe.2023.S2.0146
详细信息
    作者简介:

    杨 云(1993—),男,博士研究生,现主要从事控制棒驱动机构电磁分析的研究,E-mail: yunyang@cqu.edu.cn

  • 中图分类号: TL364

Analysis of Mixed Equivalent Magnetic Network Model of Reactor Control Rod Drive Mechanism Considering Magnetic Saturation

  • 摘要: 作为核反应堆中调节中子反应速率的执行机构,控制棒驱动机构(CRDM)的安全性和可靠性至关重要。本文提出了一种能快速、准确计算CRDM动态电磁特性的混合等效磁网络(MEMN)模型。该模型将等效磁路(EMC)法与磁阻网格(RN)法相结合,以平衡运算精度和速度之间的关系。引入磁通面积修正因子,以表征气隙磁通的边缘效应对气隙磁阻的影响。采用循环迭代的方法解决了导磁材料的非线性问题。通过本文模型的计算,得到了CRDM在不同工况下的磁密分布、线圈电感。本文模型适用于CRDM的快速优化设计和控制算法的研究。

     

  • 图  1  提升线圈磁路简化结构

    Figure  1.  Simplified Structure Diagram of Lift Coil Magnetic Circuit

    图  2  提升线圈磁路的磁场分布

    Figure  2.  Magnetic Field Distribution of Lift Coil Magnetic Circuit       

    图  3  磁密分布云图

    Figure  3.  Cloud Map of Magnetic Density Distribution

    图  4  电感变化曲线

    Figure  4.  Changing Curve of Inductance

    表  1  提升线圈磁路的主要参数

    Table  1.   Main Parameters of Lift Coil Magnetic Circuit

    参数名 参数值 参数名 参数值
    磁轭顶部长度l1/mm 37 左导磁环长度l5/mm 90
    磁轭梯形截面下底长度l2/mm 105 右导磁环长度l6/mm 180
    磁轭梯形截面上底长度l3/mm 22 提升磁极长度l7/mm 228
    磁轭轭部长度l4/mm 286 提升衔铁长度l8/mm 316
    磁轭轭部外半径r1/mm 137 磁轭轭部内半径r2/mm 127
    梯形截面内半径r3/mm 105 磁轭内半径r4/mm 94.5
    导磁环凹槽半径r5/mm 87 提升磁极外半径r7/mm 63.5
    导磁环内半径r6/mm 82.5 工作气隙长度x1/mm 15.9
    提升衔铁凹槽半径r8/mm 45 提升衔铁端部内半径r9/mm 40
    提升磁极内半径r10/mm 32
    下载: 导出CSV

    表  2  基于MEMN的磁密计算结果

    Table  2.   Magnetic Density Results Based on MEMN

    部件 磁阻编号 不同电流下的磁密/T
    4 A 16 A 28 A 40 A
    提升
    磁极
    R31 0.09 0.34 0.46 0.56
    R34 0.37 1.30 1.78 2.17
    提升
    衔铁
    R41 0.47 1.66 2.27 2.76
    R42 0.37 1.31 1.79 2.19
    R43 0.18 0.56 0.72 0.83
    R44 0.67 2.07 2.63 3.04
    R45 0.20 0.62 0.79 0.91
    下载: 导出CSV
  • [1] INDRAKOESOEMA K, HANDONO K, AWWALUDDIN M, et al. Mechanical and electrical analysis on RDE control rod[J]. Journal of Engineering Science and Technology, 2020, 15(2): 957-966.
    [2] 朱齐荣,朱京昌. 控制棒驱动机构的电磁设计计算[J]. 核动力工程,1991, 12(3): 35-40.
    [3] 沈小要. 控制棒驱动机构动态提升特性研究[J]. 核动力工程,2012, 33(1): 51-55.
    [4] PARK B J, PHAM P T, HONG K S. Model reference robust adaptive control of control element drive mechanism in a nuclear power plant[J]. International Journal of Control, Automation and Systems, 2020, 18(7): 1651-1661. doi: 10.1007/s12555-019-0987-3
    [5] ZHU Z Y, ZHU H L, LI X Y, et al. Dynamic equivalent magnetic network analysis of an axial pm bearingless flywheel machine[J]. IEEE Access, 2021, 9: 32425-32435. doi: 10.1109/ACCESS.2021.3060921
    [6] HOU J N, GENG W W, LI Q, et al. 3-D equivalent magnetic network modeling and FEA verification of a novel axial-flux hybrid-excitation in-wheel motor[J]. IEEE Transactions on Magnetics, 2021, 57(7): 8106912.
    [7] 张知竹,刘志明,李海博,等. 磁力提升型控制棒驱动机构电磁场仿真分析[J]. 机械设计与制造工程,2019, 48(12): 33-37. doi: 10.3969/j.issn.2095-509X.2019.12.008
    [8] 邓强,陈西南,刘佳,等. 磁力提升型控制棒驱动机构提升动作过程动力学分析[J]. 机械设计与制造工程,2017, 46(4): 106-110.
    [9] SUN H B, LI W Q, YU T D, et al. Research on associated motion simulation method and platform of control rod driving mechanism[J]. Advances in Mechanical Engineering, 2021, 13(9): 168781402110430.
    [10] FORSTNER G, KUGI A, KEMMETMULLER W. A magnetic equivalent circuit based modeling framework for electric motors applied to a PMSM with winding short circuit[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12285-12295. doi: 10.1109/TPEL.2020.2986042
    [11] ZHU Y, LIU G H, XU L, et al. A hybrid analytical model for permanent magnet vernier machines considering saturation effect[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1211-1223. doi: 10.1109/TIE.2021.3060656
    [12] SIM J H, AHN D G, KIM D Y, et al. Three-dimensional equivalent magnetic circuit network method for precise and fast analysis of PM-assisted claw-pole synchronous motor[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 160-171. doi: 10.1109/TIA.2017.2749312
    [13] LIU G H, WANG Y, CHEN Q, et al. Design and analysis of a new equivalent magnetic network model for IPM machines[J]. IEEE Transactions on Magnetics, 2020, 56(6): 8101112.
    [14] CAO D H, ZHAO W X, JI J H, et al. A generalized equivalent magnetic network modeling method for vehicular dual-permanent-magnet vernier machines[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 1950-1962. doi: 10.1109/TEC.2019.2921699
    [15] DING L, LIU G H, CHEN Q, et al. A novel mesh-based equivalent magnetic network for performance analysis and optimal design of permanent magnet machines[J]. IEEE Transactions on Energy Conversion, 2019, 34(3): 1337-1346. doi: 10.1109/TEC.2019.2900263
    [16] LIU G H, DING L, ZHAO W X, et al. Nonlinear equivalent magnetic network of a linear permanent magnet vernier machine with end effect consideration[J]. IEEE Transactions on Magnetics, 2018, 54(1): 8100209.
    [17] 许艳涛,祖洪彪. 控制棒驱动机构步跃动作运动分析[J]. 核技术,2013, 36(4): 040666.
    [18] CAO D H, ZHAO W X, JI J H, et al. Parametric equivalent magnetic network modeling approach for multiobjective optimization of pm machine[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6619-6629. doi: 10.1109/TIE.2020.3005105
    [19] 官瑞杨,魏新劳,王永红,等. 铁心电抗器气隙边缘效应计算及影响因素[J]. 电机与控制学报,2018, 22(4): 81-88. doi: 10.15938/j.emc.2018.04.011
    [20] 郭凤仪,王智勇. 电器基础理论[M]. 北京: 机械工业出版社,2020: 190-192.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-11
  • 修回日期:  2023-09-20
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回