高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道扩散焊式换热器封头结构对流动特性影响模拟分析

费俊杰 刘旻昀 席大鹏 唐佳 刘睿龙 昝元锋 黄彦平

费俊杰, 刘旻昀, 席大鹏, 唐佳, 刘睿龙, 昝元锋, 黄彦平. 微通道扩散焊式换热器封头结构对流动特性影响模拟分析[J]. 核动力工程, 2023, 44(S2): 176-183. doi: 10.13832/j.jnpe.2023.S2.0176
引用本文: 费俊杰, 刘旻昀, 席大鹏, 唐佳, 刘睿龙, 昝元锋, 黄彦平. 微通道扩散焊式换热器封头结构对流动特性影响模拟分析[J]. 核动力工程, 2023, 44(S2): 176-183. doi: 10.13832/j.jnpe.2023.S2.0176
Fei Junjie, Liu Minyun, Xi Dapeng, Tang Jia, Liu Ruilong, Zan Yuanfeng, Huang Yanping. Numerical Investigation of the Influence of Microchannel Diffusion Welded Heat Exchanger Head Structure on Flow Characteristics[J]. Nuclear Power Engineering, 2023, 44(S2): 176-183. doi: 10.13832/j.jnpe.2023.S2.0176
Citation: Fei Junjie, Liu Minyun, Xi Dapeng, Tang Jia, Liu Ruilong, Zan Yuanfeng, Huang Yanping. Numerical Investigation of the Influence of Microchannel Diffusion Welded Heat Exchanger Head Structure on Flow Characteristics[J]. Nuclear Power Engineering, 2023, 44(S2): 176-183. doi: 10.13832/j.jnpe.2023.S2.0176

微通道扩散焊式换热器封头结构对流动特性影响模拟分析

doi: 10.13832/j.jnpe.2023.S2.0176
详细信息
    作者简介:

    费俊杰(1997—),男,在读博士研究生,现从事反应堆热工水力与安全分析相关研究,E-mail: fjj_1997@163.com

  • 中图分类号: TL334

Numerical Investigation of the Influence of Microchannel Diffusion Welded Heat Exchanger Head Structure on Flow Characteristics

  • 摘要: 为认识和掌握封头几何结构对以超临界二氧化碳(SCO2)为工质的微通道扩散焊式换热器(简称MCD)流量分配能力的影响机理,并优化MCD封头结构设计,改善换热器流量分配均匀性,从而提高换热效能与安全性,本研究采用数值模拟方法,对不同结构MCD封头的流动和流量分配性能进行研究。为解决硬件条件对复杂换热器模型网格数量的限制,开发了一款可广泛用于MCD流体力学性能模拟的UDF程序,大量减少了重复性网格工作,降低了模拟计算的硬件门槛。运用Fluent软件,分析封头局部几何参数(不同封头壁面曲线参数、不同多孔挡板参数等)对压降、流量分配性能、流场的影响。研究结果表明,进口封头腔体内产生的涡旋以及出口封头的突缩结构会造成压力损耗,低高度的二次曲线壁面封头可以有效抑制涡旋产生,减少突缩结构造成的压力损耗,从而降低封头压降,提高流量分配性能。

     

  • 图  1  换热器一次侧流体区域模型

    Figure  1.  Fluid Region Model of Primary Side of Heat Exchanger       

    图  2  UDF功能

    Pi—单个流道的进口的工质压力;Po—单个流道的出口的工质压力;Vi—单个流道的进口的工质流速; Vo—单个流道的出口的工质流速;$P_i^* $ —经UDF程序计算的进口工质压力;$V_{\rm{o}}^*$—经UDF计算的出口工质流速;ΔP—由流速计算出的流道内压降

    Figure  2.  UDF Function

    图  3  UDF在计算循环中的作用

    Figure  3.  The Function of UDF in Computational Loops

    图  4  封头模型三维图

    Figure  4.  3D View of Head Model

    图  5  流道分组

    Figure  5.  Channel Grouping

    图  6  封头模型边界条件种类

    Figure  6.  Types of Boundary Conditions for Head Model

    图  7  不同网格方案下入口封头的出、入口压力大小

    Figure  7.  Inlet Pressure and Outlet Pressure of the Inlet Head at Different Mesh Schemes

    图  8  不同网格方案下的微流道速度大小

    Figure  8.  Velocity of Microchannels at Different Mesh Schemes

    图  9  传统封头A速度矢量图

    Figure  9.  Velocity Vector Diagram of Traditional Head A

    图  10  传统封头B速度矢量图

    Figure  10.  Velocity Vector Diagram of Traditional Head B

    图  11  改进封头A速度矢量图

    Figure  11.  Velocity Vector Diagram of Improved Head A

    图  12  改进封头B速度矢量图

    Figure  12.  Velocity Vector Diagram of Improved Head B

    图  13  改进封头C速度矢量图

    Figure  13.  Velocity Vector Diagram of Improved Head C

    图  14  各类型封头的长轴流量分配

    Figure  14.  Long Axis Fow Distribution for Various Types of Heads    

    图  15  各类型封头的短轴流量分配

    Figure  15.  Short Axis Fow Distribution for Various Types of Heads     

    图  16  各类型封头内部流体平均压降

    Figure  16.  Average Fluid Pressure Drop inside Various Types of Heads

    表  1  封头模型边界条件

    Table  1.   Boundary Conditions of Head Model

    入口边界参数 入口边界参数值
    工质 CO2
    温度/℃ 200
    压强/MPa 10
    流速/(m·s−1) 6
    出口压力/Pa 0
    下载: 导出CSV

    表  2  网格划分方案

    Table  2.   Mesh Division Scheme

    网格
    方案
    最大网格
    尺寸/mm
    最小网格
    尺寸/mm
    微流道边
    界层厚度/mm
    体网格
    生长率
    网格总
    数/万
    方案1 10 0.2 0.06 1.2 260.6
    方案2 5 0.1 0.06 1.2 484.6
    方案3 2.5 0.075 0.06 1.2 788.4
    方案4 1.8 0.05 0.06 1.2 1707.2
    方案5 1.3 0.03 0.06 1.2 3256.5
    下载: 导出CSV

    表  3  各种类型封头的流量分配参数值

    Table  3.   Flow Distribution Parameter Values for Various Types of Heads

    封头类型 整体不均匀度S 长轴不均匀度Sy 短轴不均匀度Sz
    传统封头A 0.07814 0.05085 0.02578
    传统封头B 0.08431 0.04756 0.03521
    改进封头A 0.08629 0.04659 0.03651
    改进封头B 0.08899 0.05703 0.02173
    改进封头C 0.07758 0.03923 0.02593
    下载: 导出CSV
  • [1] KRUIZENGA A M. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles[D]. Madison: The University of Wisconsin, 2010.
    [2] BESARATI S M, GOSWAMI D Y, STEFANAKOS E K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles[J]. Journal of Solar Energy Engineering, 2015, 137(3): 031018. doi: 10.1115/1.4029861
    [3] HAN Z, GUO J, HUAI X. Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy[J]. Energy, 2023, 270: 126928.
    [4] KATO Y. Advanced high temperature gas-cooled reactor systems[J]. Journal of Engineering for Gas Turbines and Power, 2008, 132(1): 012902.
    [5] FERNÁNDEZ I, SEDANO L. Design analysis of a lead-lithium/supercritical CO2 Printed Circuit Heat Exchanger for primary power recovery[J]. Fusion Engineering and Design, 2013, 88(9-10): 2427-2430. doi: 10.1016/j.fusengdes.2013.05.058
    [6] SHIRVAN K. The design of a compact integral medium size PWR: the CIRIS[D]. Cambridge: Massachusetts Institute of Technology, 2010.
    [7] RICKARD C L, FISCHER P U. High temperature gas-cooled reactor systems[C]//Proceedings of the 2nd International Fair and Technical Meetings for Nuclear Industries. Basel, Switzerland, 1969.
    [8] SERRANO I P, CANTIZANO A, LINARES J I, et al. Numerical modeling and design of supercritical CO2 pre-cooler for fusion nuclear reactors[J]. Fusion Engineering and Design, 2012, 87(7-8): 1329-1332. doi: 10.1016/j.fusengdes.2012.03.011
    [9] YOON H J, AHN Y, LEE J I, et al. Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor[J]. Nuclear Engineering and Design, 2012, 245: 223-232. doi: 10.1016/j.nucengdes.2012.01.014
    [10] JEONG W S, LEE J I, JEONG Y H. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR[J]. Nuclear Engineering and Design, 2011, 241(6): 2128-2137. doi: 10.1016/j.nucengdes.2011.03.043
    [11] BAE S J, LEE J, AHN Y, et al. Preliminary studies of compact Brayton cycle performance for small modular high temperature gas-cooled reactor system[J]. Annals of Nuclear Energy, 2015, 75: 11-19. doi: 10.1016/j.anucene.2014.07.041
    [12] ROWINSKI M K, WHITE T J, ZHAO J Y. Small and Medium sized Reactors (SMR): a review of technology[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 643-656. doi: 10.1016/j.rser.2015.01.006
    [13] LEE Y, LEE J I. Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle[J]. Annals of Nuclear Energy, 2014, 73: 84-95. doi: 10.1016/j.anucene.2014.06.022
    [14] YANG Y, BAI W G, WANG Y M, et al. Coupled simulation of the combustion and fluid heating of a 300 MW supercritical CO2 boiler[J]. Applied Thermal Engineering, 2017, 113: 259-267. doi: 10.1016/j.applthermaleng.2016.11.043
    [15] 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(z1): 13-26.

    杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(z1): 13-26.
    [16] BAE S J, AHN Y, LEE J, et al. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application[J]. Journal of Power Sources, 2014, 270: 608-618. doi: 10.1016/j.jpowsour.2014.07.121
    [17] CHU W X, BENNETT K, CHENG J, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger[J]. Applied Thermal Engineering, 2019, 146: 805-814. doi: 10.1016/j.applthermaleng.2018.10.027
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  9
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-07-20
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回