高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TaSiCN、TaAlSiCN和TaCrSiCN涂层在NaCl-KCl熔盐中的耐腐蚀性能对比研究

宁知恩 吴璐 张伟 方忠强 毛建军 孔祥刚

宁知恩, 吴璐, 张伟, 方忠强, 毛建军, 孔祥刚. TaSiCN、TaAlSiCN和TaCrSiCN涂层在NaCl-KCl熔盐中的耐腐蚀性能对比研究[J]. 核动力工程, 2023, 44(S2): 193-200. doi: 10.13832/j.jnpe.2023.S2.0193
引用本文: 宁知恩, 吴璐, 张伟, 方忠强, 毛建军, 孔祥刚. TaSiCN、TaAlSiCN和TaCrSiCN涂层在NaCl-KCl熔盐中的耐腐蚀性能对比研究[J]. 核动力工程, 2023, 44(S2): 193-200. doi: 10.13832/j.jnpe.2023.S2.0193
Ning Zhien, Wu Lu, Zhang Wei, Fang Zhongqiang, Mao Jianjun, Kong Xianggang. Comparative Study on Corrosion Resistance of TaSiCN, TaAlSiCN and TaCrSiCN Coatings in NaCl-KCl Molten Salt[J]. Nuclear Power Engineering, 2023, 44(S2): 193-200. doi: 10.13832/j.jnpe.2023.S2.0193
Citation: Ning Zhien, Wu Lu, Zhang Wei, Fang Zhongqiang, Mao Jianjun, Kong Xianggang. Comparative Study on Corrosion Resistance of TaSiCN, TaAlSiCN and TaCrSiCN Coatings in NaCl-KCl Molten Salt[J]. Nuclear Power Engineering, 2023, 44(S2): 193-200. doi: 10.13832/j.jnpe.2023.S2.0193

TaSiCN、TaAlSiCN和TaCrSiCN涂层在NaCl-KCl熔盐中的耐腐蚀性能对比研究

doi: 10.13832/j.jnpe.2023.S2.0193
基金项目: 国家自然科学基金(U2067218);国家重点研发计划(2022YFB1902403)
详细信息
    作者简介:

    宁知恩(1993—),男,助理研究员,现从事核燃料及材料辐照效应研究,E-mail: 915835972@qq.com

    通讯作者:

    吴 璐,E-mail: wulu1002@qq.com

  • 中图分类号: TL941+.33

Comparative Study on Corrosion Resistance of TaSiCN, TaAlSiCN and TaCrSiCN Coatings in NaCl-KCl Molten Salt

  • 摘要: 为探究Al、Cr元素掺杂的TaSiCN涂层在NaCl-KCl熔盐中的耐腐蚀性能,利用射频磁控溅射技术并通过调控Ar和N2混合气体的比例在Ta合金基体上制备了近似N原子百分比的TaSiCN、TaAlSiCN和TaCrSiCN纳米复合涂层。系统研究了涂层的微观结构、化学组成和耐NaCl-KCl熔盐的腐蚀性能。结果表明:所有沉积态的涂层均由TaN、TaC和Ta(C,N)纳米晶相以及SiCx、SiNx、CNx和sp2无定型态碳等非晶相组成,其中掺杂元素Al、Cr也以非晶的形式存在于涂层之中。腐蚀后的涂层表面主要由Ta(C,N)、Ta2O5、Na2Ta4O11晶相成分和一些非晶相成分构成。涂层在NaCl-KCl熔盐中的腐蚀行为主要以氧化腐蚀为主,熔盐侵蚀为辅。通过对比发现,涂层耐腐蚀性顺序为:TaAlSiCN>TaSiCN>TaCrSiCN。本研究可为熔盐电解坩埚表面涂层技术的开发提供一种具有应用潜力的候选涂层材料。

     

  • 图  1  涂层SEM图像

    Figure  1.  SEM Images of Coatings

    图  2  TaSiCN、TaAlSiCN和TaCrSiCN涂层的XRD图谱

    α—Ta;β—Ta(C,N);2θ—衍射角

    Figure  2.  XRD Patterns of TaSiCN, TaAlSiCN and TaCrSiCN Coatings

    图  3  TaSiCN、TaAlSiCN和TaCrSiCN涂层的XPS能级谱图

    图3a~图3d每列能级谱图从上到下依次为TaSiCN、TaAlSiCN、TaCrSiCN涂层;图3f中红框指示圈住的4个峰

    Figure  3.  XPS Spectra of TaSiCN, TaAlSiCN and TaCrSiCN Coatings

    图  4  腐蚀4 h后涂层表面和截面SEM图像

    Figure  4.  SEM Images of Coating Surface and Cross-section after 4 h Corrosion

    图  5  腐蚀4 h后涂层的XRD图谱

    γ—Ta2O5ε—Na2Ta4O11

    Figure  5.  XRD Patterns of Coatings after 4 h Corrosion

    图  6  腐蚀4 h后涂层的XPS图谱

    图6a能级谱图中从上到下依次为TaSiCN、TaAlSiCN、TaCrSiCN涂层

    Figure  6.  XPS Core Level Spectra of Coatings after 4 h Corrosion           

    图  7  腐蚀12 h后涂层的SEM图像和EDS谱

    Figure  7.  SEM Images and EDS Spectra for Coatings after 12 h Corrosion

    图  8  腐蚀16 h后涂层典型表面、截面SEM图像和EDS图谱

    Figure  8.  Typical Surface, Cross-section SEM Images and EDS Spectra after 16 h Corrosion

    表  1  TaSiCN、TaAlSiCN和TaCrSiCN涂层的EDS元素分析          

    Table  1.   EDS Elemental Composition of TaSiCN, TaAlSiCN and TaCrSiCN Coatings

    试样 气体流量/(mL·min−1) 元素原子百分比/%
    Ar N2 Ta Si C N Al Cr
    TaSiCN 48 6 26 6 40 29 0 0
    TaAlSiCN 48 6 22 8 34 26 10 0
    TaCrSiCN 48 6 21 9 33 24 0 13
    下载: 导出CSV

    表  2  TaSiCN、TaAlSiCN和TaCrSiCN涂层表面和截面内部的EDS元素分析

    Table  2.   EDS Element Analysis of Surface and Cross Section of TaSiCN, TaAlSiCN and TaCrSiCN Coatings

    分析区域 元素原子百分比/%
    Ta Si C N O Al Cr Cl Na K
    涂层表面 TaSiCN 18.1 4.4 20.7 4.3 44.2 0.6 6.8 0.9
    TaAlSiCN 12.8 4.8 28.2 6.6 40.5 3.2 0.5 6.8 1.4
    TaCrSiCN 17.9 4.9 25.5 13.3 24.7 9.6 0.1 3.8 0.2
    涂层截面内部 TaSiCN 19.9 8.5 25.8 38.4 5.6 0 1.8 0
    TaAlSiCN 21.6 6.3 26.1 32.2 3.8 9.8 0 0.2 0
    TaCrSiCN 17.9 7.9 23.1 31.2 7.2 10.3 0 2.4 0
    下载: 导出CSV
  • [1] CHEN L, WANG J, ZONG Z H, et al. A new rock mass classification system QHLW for high-level radioactive waste disposal[J]. Engineering Geology, 2015, 190: 33-51. doi: 10.1016/j.enggeo.2015.02.006
    [2] TANABE H, INAGAKI Y. The state of the art for high level radioactive waste (HLW) disposal in various countries[J]. Soil Mechanics & Foundation Engineering, 1998, 46: 15-18.
    [3] CRISTALDI M, IERADI L A, LICASTRO E, et al. Environmental impact of nuclear power plants on wild rodents[J]. Acta Zoologica Fennica, 1985, 173: 205-207.
    [4] SHANKAR A R, THYAGARAJAN K, MUDALI U K. Corrosion behavior of candidate materials in molten LiCl-KCl salt under argon atmosphere[J]. Corrosion, 2013, 69(7): 655-665. doi: 10.5006/0746
    [5] NING Z E, LUO X F, ZHANG W, et al. Corrosion resistance of TaSiCN coatings in NaCl-KCl molten salt[J]. Materials Research Express, 2019, 6(10): 106437. doi: 10.1088/2053-1591/ab3ed6
    [6] KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, SHEVEYKO A N, et al. Comparative study of electrochemical and impact wear behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN coatings[J]. Surface and Coatings Technology, 2013, 216: 273-281. doi: 10.1016/j.surfcoat.2012.11.058
    [7] MANULYK A. Oxidation resistance mechanism of TiAlSiCN and TiCrSiCN compositions made by plasma spark sintering at 1200℃[M]//SINGH M, OHJI T, DONG S, et al. Advances in High Temperature Ceramic Matrix Compo Sites and Materials for Sustainable Development; Ceramic Transactions, Volume CCLXIII. The American Ceramic Society, 2017: 341-351.
    [8] SHTANSKY D V, KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, et al. Comparative investigation of Al- and Cr-doped TiSiCN coatings[J]. Surface and Coatings Technology, 2011, 205(19): 4640-4648. doi: 10.1016/j.surfcoat.2011.04.012
    [9] SHTANSKY D V, LEVASHOV E A, SHEVEIKO A N, et al. The structure and properties of Ti–B–N, Ti–Si–B–N, Ti–Si–C–N, and Ti–Al–C–N coatings deposited by magnetron sputtering using composite targets produced by self-propagating high-temperature synthesis (SHS)[J]. Journal of Materials Synthesis and Processing, 1998, 6(1): 61-72. doi: 10.1023/A:1022663210694
    [10] CÓRDOBA J M, CHICARDI E, POYATO R, et al. Spark plasma sintering of Ti x Ta1− x C0.5N0.5-based cermets: effects of processing conditions on chemistry, microstructure and mechanical properties[J]. Chemical Engineering Journal, 2013, 230: 558-566. doi: 10.1016/j.cej.2013.06.104
    [11] XIE Z W, WANG L P, WANG X F, et al. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings[J]. Applied Surface Science, 2011, 258(3): 1206-1211. doi: 10.1016/j.apsusc.2011.09.072
    [12] ABD EL-RAHMAN A M, WEI R H. Effect of ion bombardment on structural, mechanical, erosion and corrosion properties of Ti–Si–C–N nanocomposite coatings[J]. Surface and Coatings Technology, 2014, 258: 320-328. doi: 10.1016/j.surfcoat.2014.09.006
    [13] SHTANSKY D V, KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, et al. High thermal stability of TiAlSiCN coatings with “comb” like nanocomposite structure[J]. Surface and Coatings Technology, 2012, 206(23): 4840-4849. doi: 10.1016/j.surfcoat.2012.05.068
    [14] MANULYK A. MAX phases: understanding of erosion, corrosion and oxidation resistance properties in TiAlSiCN and TiCrSiCN compositions[J]. MRS Online Proceedings Library, 2016, 1812(1): 9-15.
    [15] XU H, NIE X, WEI R. Tribological behavior of a TiSiCN coating tested in air and coolant[J]. Surface and Coatings Technology, 2006, 201(7): 4236-4241. doi: 10.1016/j.surfcoat.2006.08.066
    [16] WANG Y, LI J L, DANG C Q, et al. Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V[J]. Tribology International, 2017, 109: 285-296. doi: 10.1016/j.triboint.2017.01.002
    [17] LIN J L, WEI R H, GE F F, et al. TiSiCN and TiAlVSiCN nanocomposite coatings deposited from Ti and Ti-6Al-4V targets[J]. Surface and Coatings Technology, 2018, 336: 106-116. doi: 10.1016/j.surfcoat.2017.10.009
    [18] VEPREK S, VEPREK-HEIJMAN M G J. The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites[J]. Surface and Coatings Technology, 2007, 201(13): 6064-6070. doi: 10.1016/j.surfcoat.2006.08.112
    [19] VEPREK S, ZHANG R F, VEPREK-HEIJMAN M G J, et al. Superhard nanocomposites: origin of hardness enhancement, properties and applications[J]. Surface and Coatings Technology, 2010, 204(12-13): 1898-1906. doi: 10.1016/j.surfcoat.2009.09.033
    [20] VEPREK S, VEPREK-HEIJMAN M G J, KARVANKOVA P, et al. Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films, 2005, 476(1): 1-29. doi: 10.1016/j.tsf.2004.10.053
    [21] PETROV I, MYERS A, GREENE J E, et al. Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures[J]. Journal of Vacuum Science & Technology A, 1994, 12(5): 2846-2854.
    [22] WEI R, LANGA E, RINCON C, et al. Deposition of thick nitrides and carbonitrides for sand erosion protection[J]. Surface and Coatings Technology, 2006, 201(7): 4453-4459. doi: 10.1016/j.surfcoat.2006.08.091
    [23] STANDARDS N I O. NIST X-ray Photoelectron Spectroscopy Database[Z]. 2001.
    [24] CHOI S R, PARK I W, KIM S H, et al. Effects of bias voltage and temperature on mechanical properties of Ti–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques[J]. Thin Solid Films, 2004, 447-448: 371-376. doi: 10.1016/S0040-6090(03)01085-X
    [25] SCHOCK M R. Response of lead solubility to dissolved carbonate in drinking water[J]. Journal AWWA, 1980, 72(12): 695-704. doi: 10.1002/j.1551-8833.1980.tb04616.x
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-11-07
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回