PLIF Technology and Its Application in Researches of Nuclear Reactor Thermal-hydraulics
-
摘要: 哈尔滨工程大学核反应堆工程研究团队(HEU-NUREL)长期致力于平面激光诱导荧光(PLIF)技术的探索及其在反应堆热工水力研究中的应用。PLIF技术作为非侵入式先进测量手段,可实现物理场全平面的定性和定量测量,为数值模型验证提供基准实验数据。本文全面展示HEU-NUREL基于PLIF技术在核反应堆热工水力研究等方面的最新成果和进展,重点介绍应用PLIF技术在浓度测量、温度场分析、两相分布及技术探索等方面的实践路径和测量效果,阐述PLIF技术及相关方法在热工水力不同领域的技术特点和独特贡献,旨在促进PLIF技术更好地服务反应堆系统设计与安全分析。
-
关键词:
- 平面激光诱导荧光(PLIF) /
- 热工水力 /
- 浓度场 /
- 温度场 /
- 两相分布
Abstract: The Nuclear Reactor Engineering Laboratory of Harbin Engineering University (HEU-NUREL) has long been committed to the exploration of planar laser-induced fluorescence (PLIF) technology and its application in reactor thermal hydraulic study. As a non-invasive advanced measurement method, PLIF technology can achieve qualitative and quantitative measurements of the full-plane of the physical field, providing benchmark experimental data for numerical model validation. This paper will comprehensively display the latest achievements and progress of HEU-NUREL in thermal hydraulic research of nuclear reactors based on PLIF technology, focus on the practical path and measurement effect of PLIF technology in concentration measurement, temperature field analysis, two-phase distribution, and technical exploration, and describe the the technical features and unique contributions of PLIF technology in different fields of thermal and hydraulic study, aiming to promote PLIF technology to better serve the reactor system design and safety analysis. -
图 1 定位格架下游不同高度处瞬时浓度分布云图[7]
Figure 1. Instantaneous Concentration Distribution at Different Heights Downstream of the Spacer Grid
图 2 定位格架下游不同高度处横截面时均浓度分布云图[8]
Figure 2. Time-averaged Concentration Distribution in Cross Section at Different Heights Downstream of the Spacer Grid
图 3 纵截面时均浓度分布云图[9]
Figure 3. Time-averaged Concentration Distribution in Longitudinal Section
图 4 不同高度环形下降段横截面浓度分布[12]
T—时间
Figure 4. Concentration Distribution in Cross Section of Annular Downcomer at Different Heights
图 5 下降段纵截面浓度分布时序图[12]
Figure 5. Concentration Distribution Time Sequence in Longitudinal Section of Downcomer
图 7 压力容器纵截面浓度场演化[14]
Figure 7. Concentration Field Evolution in Longitudinal Section of Pressure Vessel
图 8 堆芯横截面浓度场演化[15]
Figure 8. Concentration Field Evolution in Cross Section of Reactor Core
图 10 不同流量下定位格架下游0~5Dh温度分布[18]
Figure 10. Temperature Distribution of 0~5Dh Downstream of the Spacer Grid under Different Flows
图 12 不同加热功率条件下温度场的分布[20]
Figure 12. Temperature Field Distribution under Different Heating Power Conditions
图 14 晃荡条件下稳压器液面位置变化[21]
Figure 14. Free Surface Variation in Pressurizer under Sloshing
图 15 波形板汽水分离可视化研究[23]
Figure 15. Visualization Study on Steam Water Separation of Corrugated Plate Walls
图 17 不同实验工况下速度边界层及热边界层分布[26]
Figure 17. Distribution of Velocity Boundary Layer and Thermal Boundary Layer under Different Conditions
图 18 阻塞工况下归一化速度场和温度场分布[27]
Figure 18. Normalized Velocity and Temperature Field Distribution under Blocking Conditions
-
[1] CHANG A Y, BATTLES B E, HANSON R K. Simultaneous measurements of velocity, temperature, and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH[J]. Optics Letters, 1990, 15(12): 706-708. doi: 10.1364/OL.15.000706 [2] VAN CRUYNINGEN I, LOZANO A, HANSON R K. Quantitative imaging of concentration by planar laser-induced fluorescence[J]. Experiments in Fluids, 1990, 10(1): 41-49. doi: 10.1007/BF00187871 [3] 黄真理,李玉梁,余常昭. PLIF技术测量浓度场及其二维数字校正[J]. 力学学报,1994, 26(5): 616-624. [4] 米争鹏. 基于激光诊断技术的棒束内温度分布特性研究[D]. 哈尔滨: 哈尔滨工程大学,2018. [5] QI P Y, LI X, LI X, et al. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low-frequency pulsating flows[J]. Annals of Nuclear Energy, 2019, 131: 80-92. doi: 10.1016/j.anucene.2019.03.027 [6] LI X, MI Z P, TAN S C, et al. PIV study of velocity distribution and turbulence statistics in a rod bundle[J]. Annals of Nuclear Energy, 2018, 117: 305-317. doi: 10.1016/j.anucene.2018.03.036 [7] WANG X Y, WANG R Q, TAN S J, et al. Flow visualization and mixing quantification in a rod bundle using laser induced fluorescence[J]. Nuclear Engineering and Design, 2016, 305: 1-8. doi: 10.1016/j.nucengdes.2016.01.007 [8] LI X, MI Z P, TAN S C, et al. Experimental investigation of fluid mixing inside a rod bundle using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 110: 90-102. doi: 10.1016/j.pnucene.2018.09.012 [9] 黄云龙,谭思超,米争鹏,等. 激光诱导荧光技术对棒束通道内定位格架搅浑特性研究[J]. 原子能科学技术,2018, 52(5): 839-846. doi: 10.7538/yzk.2017.youxian.0586 [10] ZHANG Q, SU J K, DU W A, et al. Experimental study on mixing phenomenon inside reactor down-comer under single-loop injection using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 117: 103046. doi: 10.1016/j.pnucene.2019.103046 [11] 张琦,谭思超,刘宇生,等. 平面激光诱导荧光法硼浓度分布特性研究[J]. 哈尔滨工程大学学报,2018, 39(5): 876-880. [12] 赵婷杰. 基于激光诊断技术下降段硼浓度分布特性研究[D]. 哈尔滨: 哈尔滨工程大学,2017. [13] ALA A A, TAN S C, ELTAYEB A, et al. Experimental study on sudden contraction and split into the inlets of two parallel rectangular jets[J]. Experimental Thermal and Fluid Science, 2019, 104: 272-283. doi: 10.1016/j.expthermflusci.2019.03.002 [14] CHEN M P, XIE G H, LI D Y, et al. Mixing characteristic measurement of flow in reactor pressure vessel by laser induced fluorescent method[C]//2021 28th International Conference on Nuclear Engineering. Virtual, Online: ASME, 2021. [15] XIE G H, CHEN M C, LI D Y, et al. Flow mixing characteristics in double loop reactor pressure vessel under accident conditions[C]//The 29th International Conference on Nuclear Engineering. Virtual, Online: ASME, 2022. [16] 米争鹏,谭思超,李兴,等. 棒束通道温度场可视化实验研究[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,2017: 673-680. [17] 米争鹏,谭思超,李兴,等. 棒束通道温度场可视化实验研究[J]. 原子能科学技术,2018, 52(5): 847-854. doi: 10.7538/yzk.2018.52.05.0847 [18] 米争鹏,谭思超,邹思远,等. 棒束通道内温度场分布特性研究[J]. 原子能科学技术,2020, 54(9): 1644-1651. doi: 10.7538/yzk.2019.youxian.0599 [19] 王啸宇. 基于激光诊断技术的棒束间流动交混特性研究[D]. 哈尔滨: 哈尔滨工程大学,2016. [20] 赵婷杰,谭思超,王啸宇,等. 双色激光诱导荧光法在矩形通道温度场测量中的应用[C]//第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 北京: 国核学会核能动力分会反应堆热工流体专业委员会,2015: 297-301. [21] WEI T Y, CHEN J R, ZHANG B, et al. Effects of ocean conditions on water level measurement of pressurizer[J]. Annals of Nuclear Energy, 2022, 169: 108913. doi: 10.1016/j.anucene.2021.108913 [22] WANG B, CHEN B W, TIAN R F. Review of research progress on flow and rupture characteristics of liquid film on corrugated plate wall[J]. Annals of Nuclear Energy, 2019, 132: 741-751. doi: 10.1016/j.anucene.2019.06.060 [23] 毛峰,田瑞峰,陈怡炫. 波形板干燥器内壁面液膜破裂临界条件的实验研究[J]. 原子能科学技术,2018, 52(5): 855-861. doi: 10.7538/yzk.2018.52.05.0855 [24] WANG B, KE B Z, CHEN B W, et al. Study on the size of secondary droplets generated owing to rupture of liquid film on corrugated plate wall[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118904. doi: 10.1016/j.ijheatmasstransfer.2019.118904 [25] 祁沛垚,邓坚,谭思超,等. 基于PIV技术的低雷诺数下棒束通道流场研究[J]. 核动力工程,2021, 42(1): 18-22. doi: 10.13832/j.jnpe.2021.01.0018 [26] YU X Y, ZHANG Y H, LI S W, et al. Simultaneous measurement of the structures of the velocity and thermal boundary layers in the rod bundle channel[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122906. doi: 10.1016/j.ijheatmasstransfer.2022.122906 [27] YUAN D D, DENG J, ZHU J H, et al. Simultaneous temperature field investigations of blockage accidents in a narrow rectangular channel by experiments and simulations[J]. Annals of Nuclear Energy, 2022, 171: 109007. doi: 10.1016/j.anucene.2022.109007