Validation and Verification of COSINE Code Based on Rod Bundle Heat Transfer Experiment
-
摘要: 为进一步提升软件计算的稳定性和准确性,对COSINE软件中重要的核心模型进行确认、评估与改进,本文采用热工水力软件包COSINE 中的系统安全分析程序cosFlow,对核电厂大破口失水事故中堆芯再淹没阶段的热工水力物理过程进行了建模与计算,计算建模根据棒束传热(RBHT)实验进行,并用RBHT 实验结果对系统安全分析程序进行检验。计算结果表明,棒束壁面温度变化趋势与实验数据趋势基本契合,即cosFlow 能够较为准确地分析大破口失水事故的骤冷前沿过程;但骤冷前沿的推进速度与RBHT的实验结果相比,前期更快后期更慢,推测原因为加热棒轴向温度梯度较大,原程序未加入轴向的热传导模块,因此后续的程序开发与研究将对骤冷前沿的热质传输模型进行改进。Abstract: To further improve the stability and accuracy of software calculation, and to confirm, evaluate and improve the important model in the software COSINE, the system safety analysis code cosFlow in the COSINE thermal-hydraulic software package was used to model and calculate the thermal-hydraulic physical process during the core reflooding stage of large-break loss-of-coolant accident (LOCA) in a nuclear power plant. The calculation modeling was based on the Rod Bundle Heat Transfer (RBHT) experiment, and the results of the experiment were used to examine the system safety analysis code. The calculation results show that the change trend of the wall temperature of the rod bundle is basically consistent with the experimental data, indicating that cosFlow can accurately analyze the progress of quench front in the large-break LOCA. However, the progress speed of the quench front is faster in the early stage and slower in the later stage compared to the experimental results of RBHT. It is speculated that this discrepancy may be attributed to the significant axial temperature gradient in the heating rod as well as a lack of axial heat conduction module in the original code. Therefore, the future code development and research will focus on improving the thermal-hydraulic transfer model of the progress of quench front.
-
Key words:
- COSINE package /
- Reflooding /
- Quench front /
- Wall temperature
-
表 1 实验工况参数表
Table 1. Parameters of Experiment Condition
参数类别 参数值 实验工况编号 937 压力/kPa 138 入口流速/(m ∙ s−1) 0.0254 峰值线功率密度/(kW ∙ m) 1.31 初始包壳温度/K 1033 入口过冷度/K 11 -
[1] The RELAP5 Development Team. RELAP5/MOD3 code manual: Code structure, system models, and solution methods[R].Office of Scientific & Technical Information Technical Reports, 1995. [2] HOUDAYER G, ROUSSEAU J C, BRUN B. CATHARE code and its qualification on analytical experiments: NUREG/CP--0041-VOL. 1[R]. Washington: Nuclear Regulatory Commission, 1983. [3] HA S J, PARK C E, KIM K D, et al. Development of the SPACE code for nuclear power plants[J]. Nuclear Engineering and Technology, 2011, 43(1): 45-62. doi: 10.5516/NET.2011.43.1.045 [4] HASHEMI-TILEHNOEE M, TASHAKOR S, SEYYEDI S M, et al. Forced reflood modeling in a 2× 2 rod bundle with a 90% partially blocked region[J]. Annals of Nuclear Energy, 2019, 131: 425-432. doi: 10.1016/j.anucene.2019.04.019 [5] JIN Y, CHEUNG F B, SHIRVAN K, et al. Numerical investigation of rod bundle thermal–hydraulic behavior during reflood transients using COBRA-TF[J]. Annals of Nuclear Energy, 2020, 148: 107708. doi: 10.1016/j.anucene.2020.107708 [6] BAEK J S, LEE W J, LEE S Y, et al. Assessments of FLECHT SEASET unblocked forced reflood tests using RELAP5/MOD3[J]. Nuclear Engineering and Technology, 1992, 24(3): 297-310. [7] CHUNG B D, LEE Y L, PARK C E, et al. Improvements to the RELAP5/MOD3 reflood model and uncertainty quantification of reflood peak clad temperature: NUREG/IA-0132[R]. Washington, DC: US Nuclear Regulatory Commission (NRC), 1996. [8] ANALYTIS G T. Developmental assessment of RELAP5/MOD3.1 with separate effect and integral test experiments: model changes and options[J]. Nuclear Engineering and Design, 1996, 163(1-2): 125-148. doi: 10.1016/0029-5493(95)01163-3 [9] 葛炜,杨燕华,刘飒,等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源,2016, 38(7): 39-44. doi: 10.3969/j.issn.1003-2355.2016.07.007 [10] 曾未,余红星,孙玉发,等. 基于RELAP5的窄缝通道再淹没模型适应性研究[J]. 核动力工程,2013, 34(3): 50-57. doi: 10.3969/j.issn.0258-0926.2013.03.012 [11] 吴丹,余红星,于俊崇,等. 稠密棒束通道内骤冷前沿附近壁面放热模型研究[J]. 核动力工程,2013, 34(4): 33-37. doi: 10.3969/j.issn.0258-0926.2013.04.008 [12] 董博,张昊,杨燕华,等. COSINE堆芯子通道程序换热模型评估[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019: 322-329,. [13] 傅孝良,王忠毅,姚艺,等. COSINE和SPACE程序的Bennett传热实验对比计算[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会,2017: 7. [14] 阎昌琪. 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社,2007: 99-104. [15] INAYATOV A Y. Correlation of data on heat transfer. Flow parallel to tube bundles at relative tube ritches of 1.1<S/D<1.6[J]. Heat Transfer, Soviet Research, 1975, 7(3): 84-88. [16] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. [17] FORSTER H K, ZUBER N. Dynamics of vapor bubbles and boiling heat transfer[J]. AIChE Journal, 1955, 1(4): 531-535. doi: 10.1002/aic.690010425 [18] LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. [19] HOCHREITER L E, CHEUNG F B, LIN T F, et al. Rod bundle heat transfer test facility test plan and design: NUREG/CR-6975[R]. Washington: U. S. Nuclear Regulatory Commission, 2010: 1-5. [20] HOCHREITER L E, CHEUNG F B, LIN T F, et al. RBHT reflood heat transfer experiments data and analysis: NUREG/CR-6980[R]. Washington: U. S. Nuclear Regulatory Commission, 2012: 1-10.