高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RELAP5的气液相界面跨节点时压力峰修正方法的研究

王小虎 赵平辉 叶桃红 熊琰 谭超 陈云龙

王小虎, 赵平辉, 叶桃红, 熊琰, 谭超, 陈云龙. 基于RELAP5的气液相界面跨节点时压力峰修正方法的研究[J]. 核动力工程, 2024, 45(1): 34-40. doi: 10.13832/j.jnpe.2024.01.0034
引用本文: 王小虎, 赵平辉, 叶桃红, 熊琰, 谭超, 陈云龙. 基于RELAP5的气液相界面跨节点时压力峰修正方法的研究[J]. 核动力工程, 2024, 45(1): 34-40. doi: 10.13832/j.jnpe.2024.01.0034
Wang Xiaohu, Zhao Pinghui, Ye Taohong, Xiong Yan, Tan Chao, Chen Yunlong. Research on Correction Method of Pressure Spike at Gas-Liquid Interface Crossing Cells Based on RELAP5[J]. Nuclear Power Engineering, 2024, 45(1): 34-40. doi: 10.13832/j.jnpe.2024.01.0034
Citation: Wang Xiaohu, Zhao Pinghui, Ye Taohong, Xiong Yan, Tan Chao, Chen Yunlong. Research on Correction Method of Pressure Spike at Gas-Liquid Interface Crossing Cells Based on RELAP5[J]. Nuclear Power Engineering, 2024, 45(1): 34-40. doi: 10.13832/j.jnpe.2024.01.0034

基于RELAP5的气液相界面跨节点时压力峰修正方法的研究

doi: 10.13832/j.jnpe.2024.01.0034
详细信息
    作者简介:

    王小虎(1998—),男,硕士研究生,现主要从事反应堆热工水力方面的研究,E-mail: 2676134534@qq.com

    通讯作者:

    赵平辉,E-mail: phzhao@mail.ustc.edu.cn

  • 中图分类号: TL333

Research on Correction Method of Pressure Spike at Gas-Liquid Interface Crossing Cells Based on RELAP5

  • 摘要: 为减小或消除RELAP5在垂直分层流动计算时气液相界面跨节点的非物理压力峰,提高计算的稳定性,从动量方程的角度出发,研究造成垂直单管排放算例中出现压力峰的原因,并提出了直接对动量方程进行修正从而减小压力峰的方法。研究发现,液相非稳态项是引起此类压力峰的主要原因。基于此,发展了用于修正液相非稳态项的数值方法,并且通过垂直单管的充排问题和压力计问题对该数值方法进行了验证。验证结果表明,该修正方法可以减小气液相界面跨节点时的非物理压力峰,有利于提高程序的计算稳定性。

     

  • 图  1  垂直单管节点图

    TV—时间相关控制体,用来设定进出口恒温恒压的边界条件;SJ—单一接管,起联通作用;P—管道;TJ—时间相关接管,用来设定出口恒定的流量边界

    Figure  1.  Nodalization of a Vertical Pipe

    图  2  空泡份额、压力和接管液相速度(原RELAP5)

    Figure  2.  Void Fraction, Pressure and Junction Liquid Velocity with Original RELAP5

    图  3  RELAP5数值计算结果节点示意图

    白色区域为气相空间;灰色区域为液相空间;$ \alpha $—空泡份额;$ {v}_{0} $—出口的液相速度;$ {v}_{\mathrm{g}} $—气相速度,$ {v}_{\mathrm{f}} $—液相速度

    Figure  3.  Schematic Diagram of Numerical Result Calculated by RELAP5

    图  4  差分节点示意图

    j—接管位置

    Figure  4.  Schematic Diagram of Difference Equation Nodalization       

    图  5  00301J接管的静压头、气相压力损失、液相压力损失和总压力损失

    Figure  5.  Static Water Head, Gas Phase Pressure Loss, Liquid Phase Pressure Loss and Total Pressure Loss at Junction 00301J

    图  6  不同网格划分对压力峰的影响

    Figure  6.  Effect of Different Nodalization Methods on Pressure Spikes     

    图  7  不同计算时间步对压力峰的影响

    Figure  7.  Effect of Different Time Steps on Pressure Spikes

    图  8  不同修正因子下压力峰的对比

    Figure  8.  Comparison of Pressure Spikes with Different Correction Factors

    图  9  气液相界面跨节点的4种情况

    Figure  9.  Four Cases of Gas-Water Interface Crossing Cell Edges       

    图  10  RELAP5修正前后00305节点的压力峰对比

    Figure  10.  Comparison of Pressure Spikes between Original and Corrected RELAP5 for Cell 00305

    图  11  压力计节点图

    Figure  11.  Nodalization of Manometer

    图  12  RELAP5修正前后33306节点的压力峰对比

    Figure  12.  Comparison of Pressure Spikes between Original and Corrected RELAP5 for Cell 33306

    图  13  压力计左边液位的对比

    Figure  13.  Comparison of Left Leg Levels of Manometer

    图  14  压力计底部液相速度的对比

    Figure  14.  Comparison of Liquid Velocities at the Bottom of Manometer

    图  15  压力计底部压力的对比

    Figure  15.  Comparison of Pressure at the Bottom of Manometer          

    表  1  不同条件下对应的修正因子

    Table  1.   Correction Factor for Different Conditions

    接管类型 接管连接的2个节点的
    空泡份额条件
    接管处速
    度条件
    修正因
    子$ {S}_{\mathrm{f},{j}} $
    a $ {\alpha }_{\mathrm{g},\mathrm{K}}=0,\quad 0 < {\alpha }_{\mathrm{g},\mathrm{L}} < 1 $ $ {v}_{\mathrm{f},{j}} < 0,\quad {v}_{\mathrm{g},{j}} > 0 $ $ {\alpha }_{\mathrm{f},\mathrm{L}} $
    b $ 0 < {\alpha }_{\mathrm{g},\mathrm{K}} < 1,\quad {\alpha }_{\mathrm{g},\mathrm{L}}=0 $ $ {v}_{\mathrm{f},{j}} > 0,\quad {v}_{\mathrm{g},{j}} < 0 $ $ {\alpha }_{\mathrm{f},\mathrm{K}} $
    c $ {\alpha }_{\mathrm{g},\mathrm{K}}=1,\quad 0 < {\alpha }_{\mathrm{g},\mathrm{L}} < 1 $ $ {v}_{\mathrm{g},{j}} < 0,\quad {v}_{\mathrm{f},{j}} > 0 $ $ {\alpha }_{\mathrm{g},\mathrm{L}} $
    d $ 0 < {\alpha }_{\mathrm{g},\mathrm{K}} < 1,\quad {\alpha }_{\mathrm{g},\mathrm{L}}=1 $ $ {v}_{\mathrm{g},{j}} > 0,\quad {v}_{\mathrm{f},{j}} < 0 $ $ {\alpha }_{\mathrm{g},\mathrm{K}} $
    下载: 导出CSV
  • [1] CO L I T. RELAP5/MOD3 code manual. Volume 4, models and correlations: NUREG/CR-5535[R]. Washington: US Nuclear Regulatory Commission, 1995.
    [2] WEAVER W L. Improvements to mixture level tracking model: INEL-96/00097[R]. Idaho Falls: Idaho National Lab, 1996.
    [3] 巢飞,单建强,张勇,等. 两流体双压力模型半隐数值算法研究[J]. 核动力工程,2018, 39(2): 142-148. doi: 10.13832/j.jnpe.2018.01.0142
    [4] ARAI M. Characteristics and stability analyses for two-phase flow equation systems with viscous terms[J]. Nuclear Science and Engineering, 1980, 74(2): 77-83. doi: 10.13182/NSE80-A19624
    [5] LYCZKOWSKI R W, GIDASPOW D, SOLBRIG C W, et al. Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations[J]. Nuclear Science and Engineering, 1978, 66(3): 378-396. doi: 10.13182/NSE78-4
    [6] HALEY T C, DREW D A, LAHEY JR R T. An analysis of the eigenvalues of bubbly two-phase flows[J]. Chemical Engineering Communications, 1991, 106(1): 93-117. doi: 10.1080/00986449108911538
    [7] RAMSHAW J D, TRAPP J A. Characteristics, stability, and short-wavelength phenomena in two-phase flow equation systems[J]. Nuclear Science and Engineering, 1978, 66(1): 93-102. doi: 10.13182/NSE78-A15191
    [8] ZOU L, ZHAO H H, ZHANG H B, et al. A revisit to the hicks' hyperbolic two-pressure two-phase flow model[C]//17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17). Xi’an, 2017.
    [9] ABE Y, AKIMOTO H, KAMO H, et al. Elimination of numerical pressure spikes induced by two-fluid model[J]. Journal of Nuclear Science and Technology, 1993, 30(12): 1214-1224. doi: 10.1080/18811248.1993.9734615
    [10] ADACHI H. Multi-dimensional thermal-hydraulics in pressure vessel during reflood phase of a PWR-LOCA[J]. Ceskoslovenská Pediatrie, 1989, 45(6): 335-8.
    [11] AKIMOTO H, IGUCHI T, OKABE K, et al. Evaluation report on CCTF core-II reflood test C2-6, run 64; Effect of radial power profile[R]. Tokai-mura: Japan Atomic Energy Research Institute, 1985.
    [12] CO L I T. RELAP5/MOD3 code manual: code structure, system models, and solution methods. Volume 1: NUREG/CR-5535[R]. Washington: US Nuclear Regulatory Commission, 1995.
    [13] AKTAS B, MAHAFFY J H. A two-phase level tracking method[J]. Nuclear Engineering and Design, 1996, 162(2-3): 271-280. doi: 10.1016/0029-5493(95)01132-3
    [14] RANSOM V H. Course A---numerical modeling of two-phase flows for presentation at Ecole d'Ete d'Analyse Numerique: EGG-EAST-8546; CONF-8906249-1[R]. Idaho Falls: EG and G Idaho, 1989.
    [15] MOODY F J, WINTERBONE D E. Introduction to unsteady thermofluid mechanics[J]. International Journal of Heat and Fluid Flow, 1991, 12(4): 384.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  42
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-05
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回