高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效导热系数理论模型的全陶瓷微封装燃料峰值温度预测方法

王某浩 步珊珊 周冰 李振中 陈德奇

王某浩, 步珊珊, 周冰, 李振中, 陈德奇. 基于等效导热系数理论模型的全陶瓷微封装燃料峰值温度预测方法[J]. 核动力工程, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041
引用本文: 王某浩, 步珊珊, 周冰, 李振中, 陈德奇. 基于等效导热系数理论模型的全陶瓷微封装燃料峰值温度预测方法[J]. 核动力工程, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041
Wang Mouhao, Bu Shanshan, Zhou Bing, Li Zhenzhong, Chen Deqi. Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel[J]. Nuclear Power Engineering, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041
Citation: Wang Mouhao, Bu Shanshan, Zhou Bing, Li Zhenzhong, Chen Deqi. Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel[J]. Nuclear Power Engineering, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041

基于等效导热系数理论模型的全陶瓷微封装燃料峰值温度预测方法

doi: 10.13832/j.jnpe.2024.01.0041
基金项目: 国家自然科学基金项目(52276052)
详细信息
    作者简介:

    王某浩(2000—),男,硕士研究生,现主要从事反应堆热工水力方面相关研究,E-mail: wangmouhao@163.com

    通讯作者:

    步珊珊,E-mail: shanshanbu@cqu.edu.cn

  • 中图分类号: TL333

Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel

  • 摘要: 为了满足工程上对全陶瓷微封装(FCM)燃料峰值温度快速预测的需求,可以将燃料的等效导热系数代入至简化的均质导热模型中进行燃料峰值温度的反计算。本文基于前期提出的多环导热模型,从基本导热方程出发,以燃料峰值温度为守恒量,将多环模型进一步等效为均质模型,推导了FCM燃料等效导热系数计算理论模型,并将该模型与常规等效导热系数理论模型进行对比。结果表明:本文构建的理论模型可以在多环模型的基础上结合均质模型从而有效地实现对燃料峰值温度的预测。该方法所预测的峰值温度值与实际值偏差基本在3%以内,因而可适用于对含内热源FCM燃料元件峰值温度的预测。本文建立的基于等效导热系数理论模型的预测方法可实现对FCM燃料峰值温度的快速预测。

     

  • 图  1  FCM燃料元件的结构示意图

    Figure  1.  Structural Schematic Diagram of FCM Fuel Element

    图  2  FCM燃料等效导热模型

    Figure  2.  Equivalent Heat Conduction Models of FCM Fuel

    图  3  多环导热模型等效示意图

    Figure  3.  Equivalent Schematic diagram of Multi-annulus Heat Conduction Model

    图  4  计算边界条件设置

    Figure  4.  Setting of Calculation Boundary Conditions

    图  5  不同理论模型计算的等效导热系数对比

    Figure  5.  Comparison of Equivalent Thermal Conductivities with Different Theoretical Models

    图  6  不同理论模型峰值温度预测对比

    Figure  6.  Comparison of Peak Temperatures Predicted by Different Theoretical Models

    表  1  TRISO燃料颗粒几何和物性参数

    Table  1.   Parameters of TRISO Fuel Particle

    核芯及包覆层 外半径/µm 导热系数/(W·m−1·K−1)
    UO2核芯 390 Fink模型[19]
    Buffer层 465 0.5
    IPyC层 495 4.0
    SiC层 535 Snead模型[20]
    OPyC层 565 4.0
    下载: 导出CSV

    表  2  FCM燃料元件几何和物性参数

    Table  2.   Parameters of FCM Fuel Element

    燃料元件结构 外半径/µm 高度/µm 导热系数/(W·m−1·K−1)
    燃料芯块 4150 13500
    气隙 4235 13500 0.28
    燃料包壳 4800 13500 16.6
    下载: 导出CSV

    表  3  不同工况下的线功率

    Table  3.   Linear Power under Different Conditions

    工况 1 2 3 4 5 6
    线功率/(W·cm−1) 165 215 265 315 365 415
    下载: 导出CSV
  • [1] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052
    [2] SNEAD L L, TERRANI K A, KATOH Y, et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 389-398. doi: 10.1016/j.jnucmat.2013.09.056
    [3] SNEAD L L, TERRANI K A, VENNERI F, et al. Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors- Properties and fabrication of FCM fuel[J]. Transactions of the American Nuclear Society, 2011, 104: 6.
    [4] TERRANI K A, SNEAD L L, GEHIN J C. Microencapsulated fuel technology for commercial light water and advanced reactor application[J]. Journal of Nuclear Materials, 2012, 427(1-3): 209-224. doi: 10.1016/j.jnucmat.2012.05.021
    [5] 李文杰,余红星,肖忠,等. 高体积份额下包覆颗粒弥散燃料等效热学模型[J]. 核动力工程,2021,42(4):96-100. doi: 10.13832/j.jnpe.2021.04.0096
    [6] MAXWELL J C. A treatise on electricity and magnetism[M]. Oxford: Cambridge University Press, 1873: 360-373.
    [7] CHIEW Y C, GLANDT E D. The effect of structure on the conductivity of a dispersion[J]. Journal of Colloid and Interface Science, 1983, 94(1): 90-104. doi: 10.1016/0021-9797(83)90238-2
    [8] BRUGGEMAN D A G. Dielectric constant and conductivity of mixtures of isotropic materials[J]. Ann Phys (Leipzig), 1935, 24: 636-679.
    [9] RAGHAVAN V R, MARTIN H. Modelling of two-phase thermal conductivity[J]. Chemical Engineering and Processing:Process Intensification, 1995, 34(5): 439-446. doi: 10.1016/0255-2701(94)00577-X
    [10] 刘子平,孙俊. 含内热源复合平板等效导热系数研究[J]. 哈尔滨工程大学学报,2021,42(12):1832-1836,1842.
    [11] 刘子平,孙俊. 含分布式内热源复合平板等效导热系数模型[J]. 清华大学学报:自然科学版,2023,63(1):104-113.
    [12] KAMALPOUR S, SALEHI A A, KHALAFI H, et al. The potential impact of fully ceramic microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor[J]. Nuclear Engineering and Design, 2018, 339: 39-52. doi: 10.1016/j.nucengdes.2018.08.029
    [13] LIU M L, THURGOOD J, LEE Y, et al. Development of a two-regime heat conduction model for TRISO-based nuclear fuels[J]. Journal of Nuclear Materials, 2019, 519: 255-264. doi: 10.1016/j.jnucmat.2019.04.004
    [14] WANG M H, BU S S, ZHOU B, et al. Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel[J]. Nuclear Engineering and Technology, 2023, 55(3): 1140-1151. doi: 10.1016/j.net.2022.12.001
    [15] LIU M L, LEE Y, RAO D V. Development of effective thermal conductivity model for particle-type nuclear fuels randomly distributed in a matrix[J]. Journal of Nuclear Materials, 2018, 508: 168-180. doi: 10.1016/j.jnucmat.2018.05.044
    [16] WANG M H, ZHOU B, BU S S, et al. A multi-annulus heat conduction model for predicting the peak temperature of nuclear fuels with randomly dispersed TRISO particles[J]. Progress in Nuclear Energy, 2023, 158: 104602. doi: 10.1016/j.pnucene.2023.104602
    [17] 唐春和,杨林,刘超,等. 高温气冷堆燃料元件发展前景[J]. 原子能科学技术,2007,41(S2):316-321.
    [18] 钱立波,余红星,孙玉发,等. TRISO燃料颗粒等效导热系数理论模型研究[J]. 核动力工程,2020,41(6):69-74. doi: 10.13832/j.jnpe.2020.06.0069
    [19] FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials, 2000, 279(1): 1-18. doi: 10.1016/S0022-3115(99)00273-1
    [20] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  35
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-05
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回