Study on Flow Distribution and Resistance Characteristics of Secondary Side of Intermediate Heat Exchanger
-
摘要: 中间热交换器是液态金属钠冷反应堆堆芯和蒸汽发生器之间进行热交换的重要设备。由于管束众多,理论计算难以得到准确的流量分配情况及阻力特性参数。针对上述问题,以某型中间热交换器为原型,在1∶1模型上开展了流量分配及阻力特性试验,获得了不同流量分配结构的流量分配因子以及二次侧中心下降段、换热管段等局部结构的阻力系数。结果表明,锥形盘和无流量分配结构会导致外层流量明显偏高;而孔板结构会降低外层流量分配因子,使流量分配更均匀。二次侧中心下降段、换热管段的阻力系数随雷诺数(Re)的增加而略微降低。二次侧下封头的阻力系数从大到小依次为锥形盘、孔板2、孔板1、无流量分配结构,总阻力系数的变化也满足这一规律。研究结果为中间热交换器的优化设计提供数据支持。Abstract: Intermediate heat exchanger is an important equipment for heat exchange between liquid-sodium cooled fast reactor core and steam generator. Due to the large number of tube bundles, it is difficult to get accurate flow distribution and resistance characteristic parameters by theoretical calculation. In order to solve the above problems, an intermediate heat exchanger was taken as a prototype, and the flow distribution and resistance characteristics tests were carried out on a 1∶1 model. The flow distribution factors of different flow distribution structures and the resistance coefficients of local structures such as the central descending section of the secondary side and the heat exchange tube section were obtained. The results show that the conical plate and no flow-distribution structure will lead to the high outer flow. The orifice plate structure can reduce the outer flow distribution factor and make the flow distribution more uniform. The resistance coefficients of the central descending section and the heat exchange tube section of the secondary side decrease slightly with the increase of Reynolds number (Re). The resistance coefficient of the secondary side lower head from large to small is conical plate, orifice plate 2, orifice plate 1, no flow distribution structure, and the change of the total resistance coefficient also follows this law. The research results can provide data support for the optimization design of intermediate heat exchanger.
-
表 1 压降测点布置
Table 1. Layout of Pressure Drop Measurement Points
测量内容 压降 测点数 中心下降管压降 ΔP13=P1−P3 1 下封头进出口压降 ΔP34=P3−P4 1 换热管段压降 ΔP47=P4−P7 1 单根换热管压降 ΔP56=P5−P6 95 二次侧总压降 ΔP19=P1−P9 1 P1~P9表示测点P1~P9所测压力 表 2 流量分配结构组合表
Table 2. Flow Distribution Structure Combination
工况 试验结构 介绍 1 孔板1 只安装孔板1,不安装锥形盘 2 孔板2 只安装孔板2,不安装锥形盘 3 锥形盘 只安装锥形盘结构,不安装孔板 4 无流量分配结构 无孔板和锥形盘结构 -
[1] 杨红义,周培德,杨启法,等. 600 MW示范快堆(CFR600)技术进展[J]. 中国原子能科学研究院年报,2017(1): 35-36. [2] 于晓丽,杨小勇,王捷. 中间换热器的传热和阻力特性[J]. 原子能科学技术,2009, 43(S2): 256-259. [3] 杨军,贾鸿玉,杨晓燕,等. 钠冷快堆系统分析程序FR-Sdaso衰变热计算模型开发与验证[J]. 原子能科学技术,2020, 54(8): 1418-1425. [4] 吴彦楠,董玉杰,原鲲. 高温堆中间换热器流道的湍流边界层与传热特性[J]. 清华大学学报:自然科学版,2013, 53(9): 1305-1309. [5] 张厚明,段天英,王刚,等. 中间热交换器建模仿真研究[J]. 核科学与工程,2014, 34(1): 107-115.