[1] |
MITCHELL G W, LIPINSKI R J, SCHWARZ M L. Heat removal from a stratified UO2-sodium particle bed: NUREG/CR-2412, SAND81-1622 R7[R]. Albuquerque: Sandia National Laboratory, 1983.
|
[2] |
REED A W. The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool[D]. Cambridge: Massachusetts Institute of Technology, 1982.
|
[3] |
DING W, XIAO X K, CAI Q H, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM[J]. Annals of Nuclear Energy, 2022, 175: 109244.
|
[4] |
SCHMIDT W. Interfacial drag of two-phase flow in porous media[J]. International Journal of Multiphase Flow, 2007, 33(6): 638-657. doi: 10.1016/j.ijmultiphaseflow.2006.09.006
|
[5] |
SUN R Y, WU L P, DING W, et al. From melt jet break-up to debris bed formation: A review of melt evolution model during fuel-coolant interaction[J]. Annals of Nuclear Energy, 2022, 165: 108642. doi: 10.1016/j.anucene.2021.108642
|
[6] |
ATKHEN K, BERTHOUD G. SILFIDE experiment: Coolability in a volumetrically heated debris bed[J]. Nuclear Engineering and Design, 2006, 236(19-21): 2126-2134. doi: 10.1016/j.nucengdes.2006.03.061
|
[7] |
KONOVALIKHIN M J. Investigations on melt spreading and coolability in a LWR severe accident[D]. Stockholm: Royal Institute of Technology, 2001.
|
[8] |
THAKRE S, LI L X, MA W M. An experimental study on coolability of a particulate bed with radial stratification or triangular shape[J]. Nuclear Engineering and Design, 2014, 276: 54-63. doi: 10.1016/j.nucengdes.2014.04.039
|
[9] |
HUANG Z, MA W M, THAKRE S. Validation of the MEWA code agsinst POMECO-HT experiments and cool ability analysis of stratified debris beds[C]//16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Chicago, 2015: 3279-3291.
|
[10] |
REED A W, BERGERON E D, BOLDT K R, et al. Coolability of UO2 debris beds in pressurized water pools: DCC-1 and DCC-2 experiment results[J]. Nuclear Engineering and Design, 1986, 97(1): 81-88. doi: 10.1016/0029-5493(86)90072-5
|
[11] |
RASHID M, KULENOVIC R, LAURIEN E, et al. Experimental results on the coolability of a debris bed with multidimensional cooling effects[J]. Nuclear Engineering and Design, 2011, 241(11): 4537-4543. doi: 10.1016/j.nucengdes.2010.11.023
|
[12] |
MAGALLON D, HOHMANN H, SCHINS H. Pouring of 100-kg-scale molten UO2 into sodium[J]. Nuclear Technology, 1992, 98(1): 79-90. doi: 10.13182/NT92-A34652
|
[13] |
KARBOJIAN A, MA W M, KUDINOV P, et al. A scoping study of debris bed formation in the DEFOR test facility[J]. Nuclear Engineering and Design, 2009, 239(9): 1653-1659. doi: 10.1016/j.nucengdes.2009.03.002
|
[14] |
MÜLLER U, SCHULENBERG T. Post-accident heat removal research: A state of the art review[R]. Technical report KfK 3601, Karlsruhe: Kernforschungszentrum Karlsruhe, 1983.
|
[15] |
KIM E, JUNG W H, PARK J H, et al. Experiments on sedimentation of particles in a water pool with gas inflow[J]. Nuclear Engineering and Technology, 2016, 48(2): 457-469. doi: 10.1016/j.net.2015.12.007
|
[16] |
张拯政,李良星,马卫民,等. 径向分层碎片床内流动特性研究[J]. 原子能科学技术,2022, 56(10): 2032-2040.
|
[17] |
HU K, THEOFANOUS T G. On the measurement and mechanism of dryout in volumetrically heated coarse particle beds[J]. International Journal of Multiphase Flow, 1991, 17(4): 519-532. doi: 10.1016/0301-9322(91)90047-7
|
[18] |
TAKASUO E. An experimental study of the coolability of debris beds with geometry variations[J]. Annals of Nuclear Energy, 2016, 92: 251-261. doi: 10.1016/j.anucene.2016.01.030
|
[19] |
CHIKHI N, COINDREAU O, LI L X, et al. Evaluation of an effective diameter to study quenching and dry-out of complex debris bed[J]. Annals of Nuclear Energy, 2014, 74: 24-41. doi: 10.1016/j.anucene.2014.05.009
|
[20] |
ZOU W, BAI X, TONG L, et al. EXPERIMENTAL INVESTIGATION ON DRYOUT PHENOMENON OF HOMOGENEOUS AND AXIAL STRATIFIED DEBRIS BED[C]//The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2023.30. The Japan Society of Mechanical Engineers, 2023: 1333.
|