高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀碎片床与分层碎片床干涸现象及热流密度实验研究

邹文斌 佟立丽 曹学武

邹文斌, 佟立丽, 曹学武. 均匀碎片床与分层碎片床干涸现象及热流密度实验研究[J]. 核动力工程, 2024, 45(1): 60-64. doi: 10.13832/j.jnpe.2024.01.0060
引用本文: 邹文斌, 佟立丽, 曹学武. 均匀碎片床与分层碎片床干涸现象及热流密度实验研究[J]. 核动力工程, 2024, 45(1): 60-64. doi: 10.13832/j.jnpe.2024.01.0060
Zou Wenbin, Tong Lili, Cao Xuewu. Experimental Study on Dryout Heat Flux of Homogeneous Debris Bed and Stratified Debris Bed[J]. Nuclear Power Engineering, 2024, 45(1): 60-64. doi: 10.13832/j.jnpe.2024.01.0060
Citation: Zou Wenbin, Tong Lili, Cao Xuewu. Experimental Study on Dryout Heat Flux of Homogeneous Debris Bed and Stratified Debris Bed[J]. Nuclear Power Engineering, 2024, 45(1): 60-64. doi: 10.13832/j.jnpe.2024.01.0060

均匀碎片床与分层碎片床干涸现象及热流密度实验研究

doi: 10.13832/j.jnpe.2024.01.0060
基金项目: 国家自然科学基金(U1967202)
详细信息
    作者简介:

    邹文斌(1998—),男,博士研究生,现从事反应堆严重事故研究,Email:zouwenbin@sjtu.edu.cn

    通讯作者:

    佟立丽,E-mail: lltong@sjtu.edu.cn

  • 中图分类号: TL364

Experimental Study on Dryout Heat Flux of Homogeneous Debris Bed and Stratified Debris Bed

  • 摘要: 碎片床的可冷却性是反应堆严重事故缓解策略关注的问题,碎片床结构对其可冷却性有重要影响。本文搭建了体积加热碎片床可冷却性实验装置,开展了均匀碎片床、轴向分层碎片床、径向分层碎片床的可冷却性实验,揭示了不同类型碎片床的干涸特性,获得了干涸热流密度(DHF)。研究结果表明:均匀碎片床条件下,小颗粒较大的气液流动阻力使得渗透率下降,导致小颗粒均匀碎片床DHF较小;轴向分层碎片床条件下,由于分层界面孔隙率降低引起的较大阻力,导致轴向分层碎片床DHF远小于顶部小颗粒组成的均匀碎片床DHF;径向分层碎片床条件下,由于小颗粒层较大的气液流动阻力会引起蒸汽向大颗粒层迁移和聚集,导致DHF低于大颗粒组成均匀床的DHF。

     

  • 图  1  实验装置示意图 mm

    Figure  1.  Diagram of the Experimental Facility

    图  2  床-1的温度响应

    采用温度飞升表示干涸,其余测点温度均集中于饱和温度附近,表明其余位置未发生干涸

    Figure  2.  Temperature in Homogeneous Bed-1

    图  3  轴向分层碎片床的温度响应

    采用温度飞升表示干涸,其余测点温度均集中于饱和温度附近,表明其余位置未发生干涸

    Figure  3.  Temperature in Axial Stratified Beds

    图  4  径向分层床干涸位置局部图

    Figure  4.  Partial Diagram of Dryout Location of Radial Stratified Beds

    图  5  径向分层碎片床的温度响应

    采用温度飞升表示干涸,其余测点温度均集中于饱和温度附近,表明其余位置未发生干涸

    Figure  5.  Temperature in Radial Stratified Beds

    图  6  大颗粒层顶部蒸汽聚集

    Figure  6.  Vapor Accumulation at the Top of Large Particle Layer      

    图  7  不同碎片床DHF的对比

    Figure  7.  Comparison of Dryout Heat Flux of Different Debris Beds      

  • [1] MITCHELL G W, LIPINSKI R J, SCHWARZ M L. Heat removal from a stratified UO2-sodium particle bed: NUREG/CR-2412, SAND81-1622 R7[R]. Albuquerque: Sandia National Laboratory, 1983.
    [2] REED A W. The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [3] DING W, XIAO X K, CAI Q H, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM[J]. Annals of Nuclear Energy, 2022, 175: 109244.
    [4] SCHMIDT W. Interfacial drag of two-phase flow in porous media[J]. International Journal of Multiphase Flow, 2007, 33(6): 638-657. doi: 10.1016/j.ijmultiphaseflow.2006.09.006
    [5] SUN R Y, WU L P, DING W, et al. From melt jet break-up to debris bed formation: A review of melt evolution model during fuel-coolant interaction[J]. Annals of Nuclear Energy, 2022, 165: 108642. doi: 10.1016/j.anucene.2021.108642
    [6] ATKHEN K, BERTHOUD G. SILFIDE experiment: Coolability in a volumetrically heated debris bed[J]. Nuclear Engineering and Design, 2006, 236(19-21): 2126-2134. doi: 10.1016/j.nucengdes.2006.03.061
    [7] KONOVALIKHIN M J. Investigations on melt spreading and coolability in a LWR severe accident[D]. Stockholm: Royal Institute of Technology, 2001.
    [8] THAKRE S, LI L X, MA W M. An experimental study on coolability of a particulate bed with radial stratification or triangular shape[J]. Nuclear Engineering and Design, 2014, 276: 54-63. doi: 10.1016/j.nucengdes.2014.04.039
    [9] HUANG Z, MA W M, THAKRE S. Validation of the MEWA code agsinst POMECO-HT experiments and cool ability analysis of stratified debris beds[C]//16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Chicago, 2015: 3279-3291.
    [10] REED A W, BERGERON E D, BOLDT K R, et al. Coolability of UO2 debris beds in pressurized water pools: DCC-1 and DCC-2 experiment results[J]. Nuclear Engineering and Design, 1986, 97(1): 81-88. doi: 10.1016/0029-5493(86)90072-5
    [11] RASHID M, KULENOVIC R, LAURIEN E, et al. Experimental results on the coolability of a debris bed with multidimensional cooling effects[J]. Nuclear Engineering and Design, 2011, 241(11): 4537-4543. doi: 10.1016/j.nucengdes.2010.11.023
    [12] MAGALLON D, HOHMANN H, SCHINS H. Pouring of 100-kg-scale molten UO2 into sodium[J]. Nuclear Technology, 1992, 98(1): 79-90. doi: 10.13182/NT92-A34652
    [13] KARBOJIAN A, MA W M, KUDINOV P, et al. A scoping study of debris bed formation in the DEFOR test facility[J]. Nuclear Engineering and Design, 2009, 239(9): 1653-1659. doi: 10.1016/j.nucengdes.2009.03.002
    [14] MÜLLER U, SCHULENBERG T. Post-accident heat removal research: A state of the art review[R]. Technical report KfK 3601, Karlsruhe: Kernforschungszentrum Karlsruhe, 1983.
    [15] KIM E, JUNG W H, PARK J H, et al. Experiments on sedimentation of particles in a water pool with gas inflow[J]. Nuclear Engineering and Technology, 2016, 48(2): 457-469. doi: 10.1016/j.net.2015.12.007
    [16] 张拯政,李良星,马卫民,等. 径向分层碎片床内流动特性研究[J]. 原子能科学技术,2022, 56(10): 2032-2040.
    [17] HU K, THEOFANOUS T G. On the measurement and mechanism of dryout in volumetrically heated coarse particle beds[J]. International Journal of Multiphase Flow, 1991, 17(4): 519-532. doi: 10.1016/0301-9322(91)90047-7
    [18] TAKASUO E. An experimental study of the coolability of debris beds with geometry variations[J]. Annals of Nuclear Energy, 2016, 92: 251-261. doi: 10.1016/j.anucene.2016.01.030
    [19] CHIKHI N, COINDREAU O, LI L X, et al. Evaluation of an effective diameter to study quenching and dry-out of complex debris bed[J]. Annals of Nuclear Energy, 2014, 74: 24-41. doi: 10.1016/j.anucene.2014.05.009
    [20] ZOU W, BAI X, TONG L, et al. EXPERIMENTAL INVESTIGATION ON DRYOUT PHENOMENON OF HOMOGENEOUS AND AXIAL STRATIFIED DEBRIS BED[C]//The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2023.30. The Japan Society of Mechanical Engineers, 2023: 1333.
  • 加载中
图(7)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  34
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-04-13
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回