高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

精细化子通道棒弯曲模型的验证与分析

周杉 蒋理 单建强 郭俊良

周杉, 蒋理, 单建强, 郭俊良. 精细化子通道棒弯曲模型的验证与分析[J]. 核动力工程, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065
引用本文: 周杉, 蒋理, 单建强, 郭俊良. 精细化子通道棒弯曲模型的验证与分析[J]. 核动力工程, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065
Zhou Shan, Jiang Li, Shan Jianqiang, Guo Junliang. Verification and Analysis of Fine Subchannel Rod Bowing Model[J]. Nuclear Power Engineering, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065
Citation: Zhou Shan, Jiang Li, Shan Jianqiang, Guo Junliang. Verification and Analysis of Fine Subchannel Rod Bowing Model[J]. Nuclear Power Engineering, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065

精细化子通道棒弯曲模型的验证与分析

doi: 10.13832/j.jnpe.2024.01.0065
基金项目: 国家重点研发计划项目(2018YFB1900402)
详细信息
    作者简介:

    周 杉(1999—),男,硕士研究生,现主要从事核反应堆安全分析研究,E-mail: 1879032684@qq.com

    通讯作者:

    单建强,E-mail: jqshan@mail.xjtu.edu.cn

  • 中图分类号: TL333

Verification and Analysis of Fine Subchannel Rod Bowing Model

  • 摘要: 为提高子通道程序在棒弯曲情况下对子通道局部参数变化的预测能力,本研究在对子通道进行精细划分的基础上,建立了精细化子通道棒弯曲模型对棒弯曲进行分析,并利用计算流体动力学(CFD)来验证精细化子通道棒弯曲模型对子通道轴流和横流的预测能力。通过CFD对模型进行验证,分析了棒弯曲段轴流和横流的变化趋势。结果表明,程序ATHAS和CFD对轴流和横流的变化趋势预测基本一致,精细化子通道棒弯曲模型可以较好地预测棒弯曲引起的轴流和横流的变化趋势。因此,精细化子通道棒弯曲模型可以预测弯曲棒对局部流场的影响,为临界热流密度的预测提供了基础。

     

  • 图  1  子通道的划分

    Figure  1.  Division of Sub-channels

    图  2  流体受力分析示意图

    Figure  2.  Schematic Diagram of Fluid Force Analysis

    图  3  速度分解示意图

    Figure  3.  Schematic Diagram of Velocity Decmposition

    图  4  搅混翼阻力分解示意图

    Figure  4.  Schematic Diagram of Resistance Decomposition of Mixing Wing

    图  5  棒弯曲段局部示意图

    Figure  5.  Local Schematic Diagram of Rod Bowing Section

    图  6  一般子通道和精细化子通道划分及间隙划分

    Figure  6.  General Sub-channels and Fined Sub-channels Division and Gap Division

    图  7  搅混翼分布

    Figure  7.  Distribution of Mixing Wings

    图  8  棒弯曲及搅混翼对横流作用方向

    Figure  8.  Action Direction of Rod Bowing and Mixing Wings on Cross Flow

    图  9  不同子通道之间轴流对比分析

    Figure  9.  Comparative Analysis of Axial Flow between Different Sub-channels

    图  10  不同间隙之间的横流对比分析

    Figure  10.  Comparative Analysis of Cross Flow between Different Gaps

    表  1  弯曲棒束几何参数

    Table  1.   Geometric Parameters of Bowing Rod Bundle

    类型参数值
    燃料棒数目25
    燃料棒直径/mm9.5
    棒栅距/mm12.6
    棒到壁面距离/mm2.5
    通道流通面积/mm22440
    加热长度/mm3658
    加热起始点/mm500
    棒束总长度/mm4800
    含搅混翼格架数目7
    含搅混翼格架轴向位置/mm971、1425、1878、2332、
    2785、3239、3747
    无搅混翼格架数目2
    无搅混翼格架轴向位置/mm502.5、4255
    简单支撑格架数目8
    简单支撑格架轴向位置/mm737、1198、1651、2105、2559、3012、3493、4001
    下载: 导出CSV
  • [1] DE LAMBERT S, CARDOLACCIA J, FAUCHER V, et al. Semi-analytical modeling of the flow redistribution upstream from the mixing grids in a context of nuclear fuel assembly bow[J]. Nuclear Engineering and Design, 2021, 371: 110940. doi: 10.1016/j.nucengdes.2020.110940
    [2] MASTERSON R E, WOLF L. COBRA-IIIP: An improved version of COBRA for full-core light water reactor analysis[J]. Nuclear Engineering and Design, 1978, 48(2-3): 293-310. doi: 10.1016/0029-5493(78)90078-X
    [3] STEWART W C, WHEELER C L, CENA R J, et al. COBRA-IV: The Model and the Method, BNWL-2214[R]. Washington: Pacific Northwest Laboratories, 1977.
    [4] BLYTH T S. Improvement of COBRA-TF subchannel thermal-hydraulics code (CTF) using Computational fluid dynamics[R]. CASL Technical Report, 2015
    [5] HWANG D H, KIM S J, SEO K W, et al. Accuracy and uncertainty analysis of PSBT benchmark exercises using a subchannel code MATRA[J]. Science and Technology of Nuclear Installations, 2012, 2012: 603752.
    [6] RAO Y F, ONDER E N, PODILA K. Assessment of subchannel code ASSERT-PV for supercritical applications[J]. The Journal of Supercritical Fluids, 2016, 117: 164-171. doi: 10.1016/j.supflu.2016.06.016
    [7] HELLER A S, FARNSWORTH D A, MCGUINN E J. Statistical methods applied to fuel rod bow analysis[J]. Journal of Pressure Vessel Techn ology, 1987, 109(1): 147-152. doi: 10.1115/1.3264847
    [8] DE LAMBERT S, CAMPIONI G, FAUCHER V, et al. Modeling the consequences of fuel assembly bowing on PWR core neutronics using a Monte-Carlo code[J]. Annals of Nuclear Energy, 2019, 134: 330-341. doi: 10.1016/j.anucene.2019.06.017
    [9] PURAGLIESI R, MUKIN R, CLIFFORD I, et al. Comparison of computational fluid dynamics and subchannel numerical solutions of fuel assemblies characterised by bowing[C]//18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). Portland: Curran Associates Inc., 2019.
    [10] MUKIN R, PURAGLIESI R, PECCHIA M, et al. Subchannel modeling of single rod bowing in a bundle geometry[J]. Nuclear Engineering and Design, 2018, 340: 347-369. doi: 10.1016/j.nucengdes.2018.09.032
    [11] 刘伟,朱元兵,白宁,等. 热工水力子通道分析程序ATHAS的稳态验证[J]. 核科学与工程,2014, 34(2): 187-192.
    [12] NINOKATA H, EFTHIMIADIS A, TODREAS N E. Distributed resistance modeling of wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 1987, 104(1): 93-102. doi: 10.1016/0029-5493(87)90306-2
    [13] JIANG L, SHAN J Q. High-precision subchannel model for single and two phase flow in PWR rod bundles with mixing grids[C]//Proceedings of the 2022 29th International Conference on Nuclear Engineering. Shenzhen China: American Society of Mechanical Engineers (ASME), 2022.
    [14] REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(5): 933-950. doi: 10.1016/0017-9310(73)90033-1
    [15] 张鸣远, 景思睿. 流体力学[M]. 西安: 西安交通大学出版社, 2013: 412-416
    [16] 孔珑. 工程流体力学[M]. 第四版. 北京: 中国电力出版社, 2014: 118.
    [17] 董思莹,刘扬,单建强. 定位格架模型对子通道分析程序的影响研究[J]. 核动力工程,2017, 38(S1): 41-44.
    [18] REN B, XU S Y, GAN F J, et al. Numerical simulation of the effect of rod bowing on critical heat flux[J]. Kerntechnik, 2022, 87(1): 38-47. doi: 10.1515/kern-2021-0037
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-17
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回