Research on High Temperature Oxidation Behavior of Zirconium Alloy for Fuel Element Based on MOOSE Platform
-
摘要: 为建立新型N36锆合金高温氧化行为预测方法,使得自主燃料元件性能分析程序FORWARD能适用于失水事故(LOCA)工况。本研究开展了新型N36锆合金高温蒸汽氧化试验,建立了N36锆合金高温氧化模型并对其进行了验证,最后基于FORWARD程序对LOCA工况下N36锆合金的高温氧化行为进行预测。结果表明,预测得到的N36锆合金的氧化增重与验证试验结果较为符合,且预测的N36锆合金在LOCA工况下的高温氧化行为较为合理。因此,本研究建立的模型和燃料元件性能分析程序能够用于新型N36锆合金高温氧化行为的预测。Abstract: In order to establish a prediction method for the high-temperature oxidation behavior of the new N36 zirconium alloy and allow the autonomous fuel element performance analysis code FORWARD to be applied to the loss of coolant accident (LOCA) condition, the high-temperature steam oxidation test of the new N36 zirconium alloy was carried out in this study. The high-temperature oxidation model of N36 zirconium alloy was developed and validated, and the high-temperature oxidation behavior of N36 zirconium alloy under LOCA condition was predicted using the FORWARD code. The results show that the predicted oxidation weight gain of N36 zirconium alloy is in good agreement with the verification test results, and the predicted oxidation behavior of N36 zirconium alloy at high temperature under LOCA condition is reasonable. Therefore, the model and fuel element performance analysis code developed in this study can be used to predict the high temperature oxidation behavior of the new N36 zirconium alloy.
-
Key words:
- N36 zirconium alloy /
- High temperature oxidation /
- MOOSE /
- FORWARD code
-
表 1 试验用锆合金的名义化学成分
Table 1. Nominal Chemical Composition of Zirconium Alloy for Testing
合金 元素质量分数/% Nb Fe Cr Sn O Zr N36 0.330 0.300 0.097 1.060 0.130 余量 表 2 高温氧化模型关系式参数取值
Table 2. Parameter Values of High Temperature Oxidation Model Relations
关系式 As/(m2 ∙ s−1) (Qs/R)/K Ag
/[(kg ∙ m−2)2 ∙ s−1](Qg/R)
/KLeistikov 7.82×10−6 20214 52.42 20962 Prater-Courtright 2.98×10−3 28420 3.3×103 26440 Cathcart-Pawel 2.25×10−6 18062 36.22 20100 表 3 不同温度下N36锆合金的抛物线速率常数
Table 3. Parabolic Rate Constants for N36 Zirconium Alloy at Different Temperatures
温度/K K/ [(mg ∙ dm–2)n ∙ s−1] n 873.15 0.38 1.92 973.15 1.61 2.22 1073.15 530 2.65 1173.15 2351 2.6 1258.15 13323 2.75 1273.15 39365 2.82 1323.15 91263 2.65 1373.15 136400 2.59 表 4 N36高温氧化模型关系式参数取值
Table 4. Parameter Values of N36 High-temperature Oxidation Model Relations
温度范围/K A/[(mg ∙ dm–2)n ∙ s−1] (Q/R)/K 873~973 4.2×105 12129 1073~1258 1.2×1012 23238 1273~1373 1.15×1012 21812 表 5 N36锆合金在LOCA工况下的模拟过程
Table 5. Simulation Process of N36 Zirconium Alloy under LOCA Condition
阶段 初始温度/K 温升率/(K ∙ s–1) 持续时间/s 保温 640 0 10 升温 640 7/10/14 80/56/40 降温 1200 –2.5 30 -
[1] MEYER R O. An assessment of fuel damage in postulated reactivity-initiated accidents[J]. Nuclear Technology, 2006, 155(3): 293-311. doi: 10.13182/NT06-A3763 [2] YOO H I, PARK S H. Experimental verification of a kinetic model of Zr-oxidation[J]. Journal of the Korean Ceramic Society, 2006, 43(11): 724-727. doi: 10.4191/KCERS.2006.43.11.724 [3] 邱军,赵文金,GUILBERT T,等. 3种锆合金的高温氧化行为[J]. 金属学报,2011, 47(9): 1216-1220. [4] LEISTIKOW S, SCHANZ G, ZUREK Z. Comparison of high temperature steam oxidation behavior of zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects[C]//The Polish-German Seminar on Properties of High Temperature Alloys. Cracow, Poland: Materials Science, 1987 [5] SCHANZ G. Recommendations and supporting information on the choice of zirconium oxidation models in severe accident codes: FZKA-6827[R]. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 2003. [6] LEISTIKOW S, SCHANZ G, BERG H V, et al. Comprehensive presentation of extended Zircaloy-4 steam oxidation results 600-1600℃[C]//OECD-NEACSNI/IAEA Specialists Meeting on Water Reactor Fuel Safety and Fission Product Release in Off-Normal and Accident Conditions. Roskilde: Riso National Laboratory, 1983: 188-199. [7] PRATER J T, COURTRIGHT E L. Zircaloy-4 oxidation at 1300 to 2400℃: NUREG/CR-4889[R]. Richland: Pacific Northwest Laboratory, 1987: 489-501. [8] CATHCART J V, PAWEL R E, MCKEE R A, et al. Zirconium metal-water oxidation kinetics. IV. Reaction rate studies. [BWR: PWR]: ORNL/NUREG-17[R]. Oak Ridge: Oak Ridge National Lab, 1977. [9] GEELHOOD K J, LUSCHER W G, BEYER C E, et al. FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods[M]. Washington: US Nuclear Regulatory Commission, 2011: 1-6. [10] SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004 [11] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. doi: 10.7538/yzk.2020.youxian.0607 [12] SLAUGHTER A E, JOHNSON M J, TONKS M R, et al. MOOSE: a framework to enable rapid advances and collaboration in modeling snow and avalanches[C]//International Snow Science Workshop 2014 Proceedings. Banff: International Snow Science Workshop, 2014: 601-607. [13] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778. doi: 10.1016/j.nucengdes.2009.05.021 [14] HALES D J, WILLIAMSON R L, NOVASCONE S R, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2016: 122-124.