高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MOOSE平台的燃料元件锆合金高温氧化行为研究

邬周志 张坤 王严培 余红星 张林 何梁 唐昌兵

邬周志, 张坤, 王严培, 余红星, 张林, 何梁, 唐昌兵. 基于MOOSE平台的燃料元件锆合金高温氧化行为研究[J]. 核动力工程, 2024, 45(1): 84-89. doi: 10.13832/j.jnpe.2024.01.0084
引用本文: 邬周志, 张坤, 王严培, 余红星, 张林, 何梁, 唐昌兵. 基于MOOSE平台的燃料元件锆合金高温氧化行为研究[J]. 核动力工程, 2024, 45(1): 84-89. doi: 10.13832/j.jnpe.2024.01.0084
Wu Zhouzhi, Zhang Kun, Wang Yanpei, Yu Hongxing, Zhang Lin, He Liang, Tang Changbing. Research on High Temperature Oxidation Behavior of Zirconium Alloy for Fuel Element Based on MOOSE Platform[J]. Nuclear Power Engineering, 2024, 45(1): 84-89. doi: 10.13832/j.jnpe.2024.01.0084
Citation: Wu Zhouzhi, Zhang Kun, Wang Yanpei, Yu Hongxing, Zhang Lin, He Liang, Tang Changbing. Research on High Temperature Oxidation Behavior of Zirconium Alloy for Fuel Element Based on MOOSE Platform[J]. Nuclear Power Engineering, 2024, 45(1): 84-89. doi: 10.13832/j.jnpe.2024.01.0084

基于MOOSE平台的燃料元件锆合金高温氧化行为研究

doi: 10.13832/j.jnpe.2024.01.0084
基金项目: 国家自然科学基金(U1867219、U2067221);四川省自然科学基金(2023NSFSC1316、2022NSFSC1953);中核集团青年科技创新团队项目
详细信息
    作者简介:

    邬周志(1995—),男,助理工程师,现主要从事燃料元件设计及性能分析方面的研究,E-mail: wuzhouzhi@163.com

  • 中图分类号: TL352

Research on High Temperature Oxidation Behavior of Zirconium Alloy for Fuel Element Based on MOOSE Platform

  • 摘要: 为建立新型N36锆合金高温氧化行为预测方法,使得自主燃料元件性能分析程序FORWARD能适用于失水事故(LOCA)工况。本研究开展了新型N36锆合金高温蒸汽氧化试验,建立了N36锆合金高温氧化模型并对其进行了验证,最后基于FORWARD程序对LOCA工况下N36锆合金的高温氧化行为进行预测。结果表明,预测得到的N36锆合金的氧化增重与验证试验结果较为符合,且预测的N36锆合金在LOCA工况下的高温氧化行为较为合理。因此,本研究建立的模型和燃料元件性能分析程序能够用于新型N36锆合金高温氧化行为的预测。

     

  • 图  1  锆合金高温蒸汽氧化装置

    Figure  1.  High Temperature Steam Oxidation Device for Zirconium Alloy

    图  2  虚拟氧化层示意图

    Figure  2.  Schematic of Virtual Oxide Layer

    图  3  高温氧化模块框架

    Figure  3.  Framework of High Temperature Oxidation Module

    图  4  N36锆合金的氧化行为模拟和试验对比

    Figure  4.  Simulation and Experimental Comparison of Oxidation Behavior of N36 Zirconium Alloy

    图  5  不同温升率下N36锆合金LOCA工况高温氧化行为预测    

    Figure  5.  Prediction of High Temperature Oxidation Behavior of N36 Zirconium Alloy under LOCA Condition and Different Temperature Rise Rates

    表  1  试验用锆合金的名义化学成分

    Table  1.   Nominal Chemical Composition of Zirconium Alloy for Testing

    合金元素质量分数/%
    NbFeCrSnOZr
    N360.3300.3000.0971.0600.130余量
    下载: 导出CSV

    表  2  高温氧化模型关系式参数取值

    Table  2.   Parameter Values of High Temperature Oxidation Model Relations

    关系式As/(m2 ∙ s−1)(Qs/R)/KAg
    /[(kg ∙ m−2)2 ∙ s−1]
    (Qg/R)
    /K
    Leistikov7.82×10−62021452.4220962
    Prater-Courtright2.98×10−3284203.3×10326440
    Cathcart-Pawel2.25×10−61806236.2220100
    下载: 导出CSV

    表  3  不同温度下N36锆合金的抛物线速率常数

    Table  3.   Parabolic Rate Constants for N36 Zirconium Alloy at Different Temperatures

    温度/KK/[(mg ∙ dm2)n ∙ s−1]n
    873.150.381.92
    973.151.612.22
    1073.155302.65
    1173.1523512.6
    1258.15133232.75
    1273.15393652.82
    1323.15912632.65
    1373.151364002.59
    下载: 导出CSV

    表  4  N36高温氧化模型关系式参数取值

    Table  4.   Parameter Values of N36 High-temperature Oxidation Model Relations

    温度范围/KA/[(mg ∙ dm2)n ∙ s−1](Q/R)/K
    873~9734.2×10512129
    1073~12581.2×101223238
    1273~13731.15×101221812
    下载: 导出CSV

    表  5  N36锆合金在LOCA工况下的模拟过程

    Table  5.   Simulation Process of N36 Zirconium Alloy under LOCA Condition

    阶段初始温度/K温升率/(K ∙ s–1)持续时间/s
    保温640010
    升温6407/10/1480/56/40
    降温1200–2.530
    下载: 导出CSV
  • [1] MEYER R O. An assessment of fuel damage in postulated reactivity-initiated accidents[J]. Nuclear Technology, 2006, 155(3): 293-311. doi: 10.13182/NT06-A3763
    [2] YOO H I, PARK S H. Experimental verification of a kinetic model of Zr-oxidation[J]. Journal of the Korean Ceramic Society, 2006, 43(11): 724-727. doi: 10.4191/KCERS.2006.43.11.724
    [3] 邱军,赵文金,GUILBERT T,等. 3种锆合金的高温氧化行为[J]. 金属学报,2011, 47(9): 1216-1220.
    [4] LEISTIKOW S, SCHANZ G, ZUREK Z. Comparison of high temperature steam oxidation behavior of zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects[C]//The Polish-German Seminar on Properties of High Temperature Alloys. Cracow, Poland: Materials Science, 1987
    [5] SCHANZ G. Recommendations and supporting information on the choice of zirconium oxidation models in severe accident codes: FZKA-6827[R]. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 2003.
    [6] LEISTIKOW S, SCHANZ G, BERG H V, et al. Comprehensive presentation of extended Zircaloy-4 steam oxidation results 600-1600℃[C]//OECD-NEACSNI/IAEA Specialists Meeting on Water Reactor Fuel Safety and Fission Product Release in Off-Normal and Accident Conditions. Roskilde: Riso National Laboratory, 1983: 188-199.
    [7] PRATER J T, COURTRIGHT E L. Zircaloy-4 oxidation at 1300 to 2400℃: NUREG/CR-4889[R]. Richland: Pacific Northwest Laboratory, 1987: 489-501.
    [8] CATHCART J V, PAWEL R E, MCKEE R A, et al. Zirconium metal-water oxidation kinetics. IV. Reaction rate studies. [BWR: PWR]: ORNL/NUREG-17[R]. Oak Ridge: Oak Ridge National Lab, 1977.
    [9] GEELHOOD K J, LUSCHER W G, BEYER C E, et al. FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods[M]. Washington: US Nuclear Regulatory Commission, 2011: 1-6.
    [10] SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004
    [11] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. doi: 10.7538/yzk.2020.youxian.0607
    [12] SLAUGHTER A E, JOHNSON M J, TONKS M R, et al. MOOSE: a framework to enable rapid advances and collaboration in modeling snow and avalanches[C]//International Snow Science Workshop 2014 Proceedings. Banff: International Snow Science Workshop, 2014: 601-607.
    [13] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778. doi: 10.1016/j.nucengdes.2009.05.021
    [14] HALES D J, WILLIAMSON R L, NOVASCONE S R, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2016: 122-124.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  34
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 修回日期:  2023-02-10
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回