高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多弧离子镀Al2O3-TiO2/FeCrAl涂层的热冲击性能及在静态铅铋中的耐腐蚀行为研究

张顺蔺 潘东 尹星 陈勇 赵海波 孙兰 王均

张顺蔺, 潘东, 尹星, 陈勇, 赵海波, 孙兰, 王均. 多弧离子镀Al2O3-TiO2/FeCrAl涂层的热冲击性能及在静态铅铋中的耐腐蚀行为研究[J]. 核动力工程, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090
引用本文: 张顺蔺, 潘东, 尹星, 陈勇, 赵海波, 孙兰, 王均. 多弧离子镀Al2O3-TiO2/FeCrAl涂层的热冲击性能及在静态铅铋中的耐腐蚀行为研究[J]. 核动力工程, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090
Zhang Shunlin, Pan Dong, Yin Xing, Chen Yong, Zhao Haibo, Sun Lan, Wang Jun. Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating[J]. Nuclear Power Engineering, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090
Citation: Zhang Shunlin, Pan Dong, Yin Xing, Chen Yong, Zhao Haibo, Sun Lan, Wang Jun. Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating[J]. Nuclear Power Engineering, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090

多弧离子镀Al2O3-TiO2/FeCrAl涂层的热冲击性能及在静态铅铋中的耐腐蚀行为研究

doi: 10.13832/j.jnpe.2024.01.0090
基金项目: 四川大学—中国核动力研究设计院2022年度联合创新基金(SCU&DRSI-LHCX-20)
详细信息
    作者简介:

    张顺蔺(1999—),男,硕士研究生,现主要从事反应堆用包壳材料耐铅铋腐蚀涂层的研究,E-mail: 411747742@qq.com

    通讯作者:

    潘 东,E-mail:329856489@qq.com

  • 中图分类号: TL341

Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating

  • 摘要: 为探索一种核电用包壳材料FeCrAl合金表面涂层的制备方法,本文利用多弧离子镀技术在FeCrAl合金表面制备了以FeCrAl作为过渡层的Al2O3-TiO2涂层,对试样进行热冲击实验以探究涂层的抗热冲击性能,对试样进行600℃、1000 h静态铅铋合金(LBE)腐蚀实验,研究涂层的耐腐蚀性能,表征和分析了试样经LBE腐蚀前后的相组成和显微形貌。结果表明,通过多弧离子镀制备的Al2O3-TiO2为非晶态,30次热冲击试验后涂层未出现开裂、脱落等现象。腐蚀后,FeCrAl基体试样表面发生明显溶解腐蚀。而X射线衍射分析显示涂层试样在腐蚀后Al2O3发生结晶,表层Al2O3结构收缩出现孔隙,而涂层内部仍保持致密,且截面分析显示LBE未渗入涂层内部。因此,Al2O3-TiO2/FeCrAl涂层能有效地阻止LBE对基体材料的腐蚀。

     

  • 图  1  设计的石英管和LBE腐蚀过程

    Figure  1.  Designed Quartz Tube and LBE Corrosion Processes

    图  2  原始Al2O3-TiO2/FeCrAl涂层试样截面SEM形貌

    Figure  2.  SEM Morphology of the Original Al2O3-TiO2/FeCrAl Coating Sample Section      

    图  3  原始Al2O3-TiO2/FeCrAl涂层试样表面SEM形貌及EDS面扫      

    Figure  3.  SEM Morphology and EDS Mapping of the Original Al2O3-TiO2/FeCrAl Coating Sample Surface

    图  4  原始Al2O3-TiO2/FeCrAl涂层试样表面GIXRD图谱

    Figure  4.  GIXRD Pattern of the Original Al2O3-TiO2/FeCrAl Coating Sample Surface

    图  5  Al2O3-TiO2/FeCrAl涂层试样热冲击试验0~30次后宏观形貌

    Figure  5.  Macro-Morphology of the Al2O3-TiO2/FeCrAl Coating Samples after 0~30 Thermal-Shock Tests

    图  6  Al2O3-TiO2/FeCrAl涂层试样经30次热冲击试验后 SEM 形貌

    Figure  6.  SEM Morphology of the Al2O3-TiO2/FeCrAl Coating Samples after Thirty Thermal-shock Tests

    图  7  Al2O3-TiO2/FeCrAl涂层试样600℃下LBE腐蚀1000 h后表面SEM形貌及EDS面扫

    Figure  7.  SEM Morphology and EDS Mapping Analysis of the Al2O3-TiO2/FeCrAl Coating Sample Surface after LBE Corrosion at 600℃ for 1000 h

    图  8  Al2O3-TiO2/FeCrAl涂层试样600℃下LBE腐蚀1000 h后表面GIXRD图谱     

    Figure  8.  GIXRD Pattern of the Al2O3-TiO2/FeCrAl Coating Surface after LBE Corrosion at 600℃ for 1000 h

    图  9  FeCrAl基体试样600℃下LBE腐蚀1000 h后表面SEM形貌及EDS面扫

    Figure  9.  SEM Morphology and EDS Mapping of the FeCrAl Substrate Surface after LBE Corrosion at 600℃ for 1000 h

    图  10  Al2O3-TiO2/FeCrAl涂层试样600℃下LBE腐蚀1000 h截面SEM形貌及EDS面扫

    Figure  10.  SEM Morphology and EDS Mapping of the Al2O3-TiO2/FeCrAl Coating Sample Section after LBE Corrosion at 600℃ for 1000 h

    图  11  Al2O3-TiO2/FeCrAl涂层LBE腐蚀机理示意图

    Figure  11.  Schematics of Corrosion Mechanism of the Al2O3-TiO2/FeCrAl Coating after Liquid LBE Corrosion

    图  12  FeCrAl基体试样600℃下LBE腐蚀1000 h后试样截面EDS面扫

    Figure  12.  EDS Mapping of the FeCrAl Substrate Sample Section after LBE Corrosion at 600℃ for 1000 h

    表  1  图2 EDS点扫结果

    Table  1.   EDS Results of Fig.2

    点1 点2 点3
    元素 原子百分比/% 元素 原子百分比/% 元素 原子百分比/%
    O 59.69 Al 4.30 O 15.93
    Al 24.28 Cr 24.75 Al 10.66
    Ti 10.14 Fe 70.95 Cr 12.36
    Cr 3.64 Fe 61.05
    Fe 2.25
    总量 100.00 总量 100.00 总量 100.00
    下载: 导出CSV

    表  2  图6 EDS点扫结果

    Table  2.   EDS Results of Fig.6

    点1 点2
    元素 原子百分比/% 元素 原子百分比/%
    O 56.25 Al 4.09
    Al 30.46 Ti 0.48
    Ti 11.70 Cr 25.83
    Cr 0.37 Fe 69.60
    Fe 1.22
    总量 100.00 总量 100.00
    下载: 导出CSV

    表  3  图7 EDS点扫结果

    Table  3.   EDS Results of Fig.7

    元素 原子百分比/%
    O 60.72
    Al 30.44
    Ti 7.42
    Cr 0.54
    Fe 0.88
    总量 100.00
    下载: 导出CSV
  • [1] LORUSSO P, BASSINI S, DEL NEVO A, et al. GEN-IV LFR development: status & perspectives[J]. Progress in Nuclear Energy, 2018, 105: 318-331. doi: 10.1016/j.pnucene.2018.02.005
    [2] DENG L L, WANG Y Q, ZHAI Z A, et al. Multi-physics model development for polonium transport behavior in a lead-cooled fast reactor[J]. Frontiers in Energy Research, 2021, 9: 711916. doi: 10.3389/fenrg.2021.711916
    [3] CHENG S B, ZOU Y L, DONG Y H, et al. Experimental study on pressurization characteristics of a water droplet entrapped in molten LBE pool[J]. Nuclear Engineering and Design, 2021, 378: 111192. doi: 10.1016/j.nucengdes.2021.111192
    [4] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [5] ZHU R S, CHEN Y M, LU Y G, et al. Research on structure selection and design of LBE-cooled fast reactor main coolant pump[J]. Nuclear Engineering and Design, 2021, 371: 110973. doi: 10.1016/j.nucengdes.2020.110973
    [6] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920
    [7] WANG H R, YU H, LIU J R, et al. Characterization and corrosion behavior of Al-added high Mn ODS austenitic steels in oxygen-saturated lead-bismuth eutectic[J]. Corrosion Science, 2022, 209: 110818. doi: 10.1016/j.corsci.2022.110818
    [8] YAMAKI E, TAKAHASHI M. Corrosion resistance of Fe-Al-alloy-coated ferritic/martensitic steel under bending stress in high-temperature lead-bismuth eutectic[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 797-804. doi: 10.1080/18811248.2011.9711762
    [9] SUN W J, TANG Z H, WANG J, et al. Corrosion behavior of a Cr-Al coating deposited on 304 austenitic stainless steel by multi-arc ion plating in liquid lead–bismuth eutectic[J]. Coatings, 2022, 12(5): 667. doi: 10.3390/coatings12050667
    [10] LO K C, LAI H Y. Corrosion enhancement for FGM coolant pipes subjected to high-temperature and hydrostatic pressure[J]. Coatings, 2022, 12(5): 666. doi: 10.3390/coatings12050666
    [11] WEISENBURGER A, JIANU A, AN W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 77-84. doi: 10.1016/j.jnucmat.2011.11.027
    [12] DAI Y, BOUTELLIER V, GAVILLET D, et al. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE[J]. Journal of Nuclear Materials, 2012, 431(1-3): 66-76. doi: 10.1016/j.jnucmat.2011.11.006
    [13] WU Z Y, ZHAO X, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600℃[J]. Journal of Nuclear Materials, 2020, 539: 152280. doi: 10.1016/j.jnucmat.2020.152280
    [14] FERRÉ F G, MAIROV A, IADICICCO D, et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors[J]. Corrosion Science, 2017, 124: 80-92. doi: 10.1016/j.corsci.2017.05.011
    [15] FERRÉ F G, ORMELLESE M, DI FONZO F, et al. Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: a preliminary study[J]. Corrosion Science, 2013, 77: 375-378. doi: 10.1016/j.corsci.2013.07.039
    [16] 农毅. Al2O3-TiO2复相涂层制备及其LBE动态腐蚀性能研究[D]. 衡阳:南华大学,2017.
    [17] 廖孟德,许文举,吉利,等. 氧气流量对电弧离子镀制备氧化铬薄膜结构及摩擦学性能的影响[J]. 表面技术,2021,50(5):168-176. doi: 10.16490/j.cnki.issn.1001-3660.2021.05.018
    [18] 尹衍升,高振民,张景德,等. Fe3Al/Al2O3陶瓷复合梯度涂层抗热震性研究[J]. 硅酸盐学报,2003,31(9):867-872. doi: 10.3321/j.issn:0454-5648.2003.09.011
    [19] 袁哲,张树林,李争显,等. 多弧离子镀设备阴极电弧蒸发源工作稳定性的研究[J]. 真空,1992(2):24-30. doi: 10.13385/j.cnki.vacuum.1992.02.004
    [20] 曹琳琳. FeCrAl涂层的磁控溅射制备与腐蚀性能研究[D]. 西安:西安理工大学,2017.
    [21] 王丽娜. FeCrAl涂层的制备及抗氧化性能研究[D]. 西安:西安理工大学,2018.
    [22] 宋斌斌,吴平,陈森,等. 射频磁控溅射法制备氧化铝涂层绝缘性能及吸氢特性[J]. 原子能科学技术,2010,44(11):1311-1317.
    [23] 邓振强. FeCrAl不锈钢相析出与形变机理研究[D]. 北京:北京科技大学,2021.
    [24] 吴晓东,翁端,陈震,等. 等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响[J]. 清华大学学报:自然科学版,2002,42(10):1293-1296.
    [25] ZHONG Y L, ZHANG W, CHEN Q S, et al. Effect of LBE corrosion on microstructure of amorphous Al2O3 coating by magnetron sputtering[J]. Surface and Coatings Technology, 2022, 443: 128598. doi: 10.1016/j.surfcoat.2022.128598
    [26] MAVRIČ A, VALANT M, CUI C H, et al. Advanced applications of amorphous alumina: from nano to bulk[J]. Journal of Non-Crystalline Solids, 2019, 521: 119493. doi: 10.1016/j.jnoncrysol.2019.119493
    [27] 马良义,台鹏飞,王志光,等. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报,2022,36(7):20100178.
    [28] WAN Q, WU Z Y, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating[J]. Corrosion Science, 2021, 183: 109264. doi: 10.1016/j.corsci.2021.109264
    [29] 农毅,邱长军,杨育洁,等. Al2O3-TiO2复相陶瓷涂层在动态LBE中的耐腐蚀行为[J]. 表面技术,2017,46(4):235-239.
    [30] DU X C, NIU F L, ZHU H P, et al. Influence of oxide scale on the wettability of LBE on T91 steel[J]. Fusion Engineering and Design, 2017, 125: 378-383. doi: 10.1016/j.fusengdes.2017.03.089
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  25
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-06-20
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回