Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating
-
摘要: 为探索一种核电用包壳材料FeCrAl合金表面涂层的制备方法,本文利用多弧离子镀技术在FeCrAl合金表面制备了以FeCrAl作为过渡层的Al2O3-TiO2涂层,对试样进行热冲击实验以探究涂层的抗热冲击性能,对试样进行600℃、1000 h静态铅铋合金(LBE)腐蚀实验,研究涂层的耐腐蚀性能,表征和分析了试样经LBE腐蚀前后的相组成和显微形貌。结果表明,通过多弧离子镀制备的Al2O3-TiO2为非晶态,30次热冲击试验后涂层未出现开裂、脱落等现象。腐蚀后,FeCrAl基体试样表面发生明显溶解腐蚀。而X射线衍射分析显示涂层试样在腐蚀后Al2O3发生结晶,表层Al2O3结构收缩出现孔隙,而涂层内部仍保持致密,且截面分析显示LBE未渗入涂层内部。因此,Al2O3-TiO2/FeCrAl涂层能有效地阻止LBE对基体材料的腐蚀。
-
关键词:
- FeCrAl合金 /
- 多弧离子镀 /
- Al2O3-TiO2/FeCrAl涂层 /
- 抗热冲击性能 /
- 铅铋合金(LBE)腐蚀
Abstract: This work aims to explore a method for preparing the surface coating of FeCrAl alloy, a cladding material in nuclear power industry. The Al2O3-TiO2 coating with FeCrAl as the intermediate layer was prepared on FeCrAl alloy by multi-arc ion plating. The thermal-shock test was carried out to explore the thermal-shock resistance of the coating. The corrosion resistance of the coating was studied after the static lead-bismuth eutectic (LBE) corrosion test at 600℃ for 1000 h. The phase composition and micromorphologies of substrate and coating samples before and after LBE corrosion were characterized. The results showed that the Al2O3-TiO2 prepared by multi-arc ion plating was amorphous. After 30 thermal shock tests, the coating did not crack or fall off. After the corrosion, the surface of FeCrAl substrate showed obvious dissolution corrosion. GIXRD results showed that Al2O3 crystallization occurred in the coating samples after corrosion. The Al2O3 structure on the surface shrank and pores appeared, while the inner layer of the coating remained dense. The sectional analysis showed that LBE did not penetrate into the coating. Therefore, the Al2O3-TiO2/FeCrAl coating can effectively protect the substrate from LBE corrosion. -
表 1 图2 EDS点扫结果
Table 1. EDS Results of Fig.2
点1 点2 点3 元素 原子百分比/% 元素 原子百分比/% 元素 原子百分比/% O 59.69 Al 4.30 O 15.93 Al 24.28 Cr 24.75 Al 10.66 Ti 10.14 Fe 70.95 Cr 12.36 Cr 3.64 Fe 61.05 Fe 2.25 总量 100.00 总量 100.00 总量 100.00 表 2 图6 EDS点扫结果
Table 2. EDS Results of Fig.6
点1 点2 元素 原子百分比/% 元素 原子百分比/% O 56.25 Al 4.09 Al 30.46 Ti 0.48 Ti 11.70 Cr 25.83 Cr 0.37 Fe 69.60 Fe 1.22 总量 100.00 总量 100.00 表 3 图7 EDS点扫结果
Table 3. EDS Results of Fig.7
元素 原子百分比/% O 60.72 Al 30.44 Ti 7.42 Cr 0.54 Fe 0.88 总量 100.00 -
[1] LORUSSO P, BASSINI S, DEL NEVO A, et al. GEN-IV LFR development: status & perspectives[J]. Progress in Nuclear Energy, 2018, 105: 318-331. doi: 10.1016/j.pnucene.2018.02.005 [2] DENG L L, WANG Y Q, ZHAI Z A, et al. Multi-physics model development for polonium transport behavior in a lead-cooled fast reactor[J]. Frontiers in Energy Research, 2021, 9: 711916. doi: 10.3389/fenrg.2021.711916 [3] CHENG S B, ZOU Y L, DONG Y H, et al. Experimental study on pressurization characteristics of a water droplet entrapped in molten LBE pool[J]. Nuclear Engineering and Design, 2021, 378: 111192. doi: 10.1016/j.nucengdes.2021.111192 [4] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011 [5] ZHU R S, CHEN Y M, LU Y G, et al. Research on structure selection and design of LBE-cooled fast reactor main coolant pump[J]. Nuclear Engineering and Design, 2021, 371: 110973. doi: 10.1016/j.nucengdes.2020.110973 [6] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920 [7] WANG H R, YU H, LIU J R, et al. Characterization and corrosion behavior of Al-added high Mn ODS austenitic steels in oxygen-saturated lead-bismuth eutectic[J]. Corrosion Science, 2022, 209: 110818. doi: 10.1016/j.corsci.2022.110818 [8] YAMAKI E, TAKAHASHI M. Corrosion resistance of Fe-Al-alloy-coated ferritic/martensitic steel under bending stress in high-temperature lead-bismuth eutectic[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 797-804. doi: 10.1080/18811248.2011.9711762 [9] SUN W J, TANG Z H, WANG J, et al. Corrosion behavior of a Cr-Al coating deposited on 304 austenitic stainless steel by multi-arc ion plating in liquid lead–bismuth eutectic[J]. Coatings, 2022, 12(5): 667. doi: 10.3390/coatings12050667 [10] LO K C, LAI H Y. Corrosion enhancement for FGM coolant pipes subjected to high-temperature and hydrostatic pressure[J]. Coatings, 2022, 12(5): 666. doi: 10.3390/coatings12050666 [11] WEISENBURGER A, JIANU A, AN W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 77-84. doi: 10.1016/j.jnucmat.2011.11.027 [12] DAI Y, BOUTELLIER V, GAVILLET D, et al. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE[J]. Journal of Nuclear Materials, 2012, 431(1-3): 66-76. doi: 10.1016/j.jnucmat.2011.11.006 [13] WU Z Y, ZHAO X, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600℃[J]. Journal of Nuclear Materials, 2020, 539: 152280. doi: 10.1016/j.jnucmat.2020.152280 [14] FERRÉ F G, MAIROV A, IADICICCO D, et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors[J]. Corrosion Science, 2017, 124: 80-92. doi: 10.1016/j.corsci.2017.05.011 [15] FERRÉ F G, ORMELLESE M, DI FONZO F, et al. Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: a preliminary study[J]. Corrosion Science, 2013, 77: 375-378. doi: 10.1016/j.corsci.2013.07.039 [16] 农毅. Al2O3-TiO2复相涂层制备及其LBE动态腐蚀性能研究[D]. 衡阳:南华大学,2017. [17] 廖孟德,许文举,吉利,等. 氧气流量对电弧离子镀制备氧化铬薄膜结构及摩擦学性能的影响[J]. 表面技术,2021,50(5):168-176. doi: 10.16490/j.cnki.issn.1001-3660.2021.05.018 [18] 尹衍升,高振民,张景德,等. Fe3Al/Al2O3陶瓷复合梯度涂层抗热震性研究[J]. 硅酸盐学报,2003,31(9):867-872. doi: 10.3321/j.issn:0454-5648.2003.09.011 [19] 袁哲,张树林,李争显,等. 多弧离子镀设备阴极电弧蒸发源工作稳定性的研究[J]. 真空,1992(2):24-30. doi: 10.13385/j.cnki.vacuum.1992.02.004 [20] 曹琳琳. FeCrAl涂层的磁控溅射制备与腐蚀性能研究[D]. 西安:西安理工大学,2017. [21] 王丽娜. FeCrAl涂层的制备及抗氧化性能研究[D]. 西安:西安理工大学,2018. [22] 宋斌斌,吴平,陈森,等. 射频磁控溅射法制备氧化铝涂层绝缘性能及吸氢特性[J]. 原子能科学技术,2010,44(11):1311-1317. [23] 邓振强. FeCrAl不锈钢相析出与形变机理研究[D]. 北京:北京科技大学,2021. [24] 吴晓东,翁端,陈震,等. 等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响[J]. 清华大学学报:自然科学版,2002,42(10):1293-1296. [25] ZHONG Y L, ZHANG W, CHEN Q S, et al. Effect of LBE corrosion on microstructure of amorphous Al2O3 coating by magnetron sputtering[J]. Surface and Coatings Technology, 2022, 443: 128598. doi: 10.1016/j.surfcoat.2022.128598 [26] MAVRIČ A, VALANT M, CUI C H, et al. Advanced applications of amorphous alumina: from nano to bulk[J]. Journal of Non-Crystalline Solids, 2019, 521: 119493. doi: 10.1016/j.jnoncrysol.2019.119493 [27] 马良义,台鹏飞,王志光,等. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报,2022,36(7):20100178. [28] WAN Q, WU Z Y, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating[J]. Corrosion Science, 2021, 183: 109264. doi: 10.1016/j.corsci.2021.109264 [29] 农毅,邱长军,杨育洁,等. Al2O3-TiO2复相陶瓷涂层在动态LBE中的耐腐蚀行为[J]. 表面技术,2017,46(4):235-239. [30] DU X C, NIU F L, ZHU H P, et al. Influence of oxide scale on the wettability of LBE on T91 steel[J]. Fusion Engineering and Design, 2017, 125: 378-383. doi: 10.1016/j.fusengdes.2017.03.089