Research on Extraction of Mo from Simulated Low Enriched Uranium Fuel Solution of Medical Isotope Reactor Based on Spherical Alumina
-
摘要: 为改善医用同位素试验堆在99Mo提取时,氧化铝填料柱易堵塞的情况,进一步提高在低浓铀条件下99Mo的吸附效果,本文采用溶胶凝胶-油柱成型的方法开展氧化铝微球的合成研究,考察其对Mo的吸附行为以及动态吸附条件;并在模拟低浓铀溶液堆燃料溶液中,进行球形氧化铝对Mo的提取研究。结果表明,制备的球形氧化铝具有更大粒径和比表面积,可有效缓解填料柱堵塞问题,并提高Mo的吸附容量。制备的球形氧化铝对Mo的吸附过程符合准二级动力学模型和Freundlich吸附等温线模型。在低浓铀燃料模拟溶液中,球形氧化铝对Mo的回收率为87.4%,杂质也符合药典要求。因此,制备的球形氧化铝有望应用于医用同位素试验堆99Mo提取过程。Abstract: In order to improve the situation that alumina column is easily blocked during the extraction of 99Mo in Medical Isotope Test Reactor and further improve the adsorption effect of 99Mo under low enriched uranium condition, the synthesis of spherical alumina was studied. Alumina microspheres were prepared by sol-gel-oil column molding, and their adsorption behavior and dynamic adsorption conditions were investigated. The study on the extraction of Mo by spherical alumina in simulated low enriched uranium fuel solution was carried out. The results show that the prepared spherical alumina has larger particle size and specific surface area, which can effectively alleviate the column plugging problem and improve the adsorption capacity of Mo. The adsorption process of Mo was consistent with the quasi-second-order kinetic model and the Freundlich adsorption isotherm model. In the simulated solution of low enriched uranium fuel, the recovery rate of spherical alumina to Mo is 87.4%, and the impurities also meet the requirements of pharmacopoeia. Therefore, the prepared spherical alumina is expected to be applied to the extraction process of 99Mo in medical isotope test reactor.
-
Key words:
- Oil column method /
- Spherical alumina /
- 99Mo /
- Low enriched uranium /
- Medical isotope test reactor
-
表 1 制备球形氧化铝和市售氧化铝参数对比
Table 1. Comparison of Parameters between Prepared Spherical Alumina and Commercial Alumina
材料 比表面积/(m2 ∙ g−1) 孔容/(cm3 ∙ g−1) 孔径/nm 粒径/μm 制备球形氧化铝 280 0.8 11.8 80~200 市售氧化铝 139 0.19 5.36 50~100 -
[1] VAN DER WALT T N, COETZEE P P. The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use[J]. Radiochimica Acta, 2004, 92(4-6): 251-257. doi: 10.1524/ract.92.4.251.35589 [2] 贾红梅,刘伯里. 中国放射性药物的现状与展望[J]. 同位素,2011, 24(3): 129-139. [3] LIEM P H, TRAN H N, SEMBIRING T M. Design optimization of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production[J]. Progress in Nuclear Energy, 2015, 82: 191-196. doi: 10.1016/j.pnucene.2014.07.040 [4] ZHUIKOV B L. Production of medical radionuclides in Russia: Status and future—a review[J]. Applied Radiation and Isotopes, 2014, 84: 48-56. doi: 10.1016/j.apradiso.2013.11.025 [5] SERVICE R F. Scrambling to close the isotope gap[J]. Science, 2011, 331(6015): 277-279. doi: 10.1126/science.331.6015.277 [6] 邓启民,李茂良,程作用. 医用同位素生产堆(MIPR)生产99Mo的应用前景[J]. 核科学与工程,2006, 26(2): 165-167. [7] 高峰,林力,刘宇昊,等. 医用同位素生产现状及技术展望[J]. 同位素,2016, 29(2): 116-120. [8] BOLDYREV P P, GOLUBEV V S, MYASNIKOV S V, et al. The Russian ARGUS solution reactor HEU-LEU conversion: LEU fuel preparation, loading and first criticality[C]//Rertr 2014 ― 35th International Meeting on Reduced Enrichment for Research and Test Reactors. Vienna: IAEA Vienna International Center, 2014. [9] 邓启民, 程作用, 李茂良, 等. 利用MIPR生产99Mo、131I和89Sr的可行性研究[J]. 核动力工程, 2011, 32(6): 115-118. [10] RAO A, SHARMA A K, KUMAR P, et al. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy[J]. Applied Radiation and Isotopes, 2014, 89: 186-191. doi: 10.1016/j.apradiso.2014.02.013 [11] SANCHEZ V, MILLAN S, FUCUGAUCHI L A. Purification of Mo-99 using Chelex-100 ion exchange resin[J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1989, 33(3): 259-259. [12] ROTSCH D A, YOUKER A J, TKAC P, et al. Chemical processing of mini-SHINE target solutions for recovery and purification of Mo-99[C]//Proceedings of Mo-99 2014 Topical Meeting on Molybdenum-99 Technology Development. Washington: Hamilton Crowne Plaza, 2014. [13] 肖伦. 放射性同位素技术[M]. 第二版. 北京: 原子能出版社, 2005: 48-50, 338-355. [14] HWANG D S, CHOUNG W M, KIM Y K, et al. Separation of 99Mo from a simulated fission product solution by precipitation with a-benzoinoxime[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 254(2): 255-262. doi: 10.1023/A:1021659429587 [15] MANDAL S, MANDAL A, LAHIRI S. Species dependent extraction of 99Mo[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 861-863. doi: 10.1007/s10967-012-1850-7 [16] 郭景儒. 裂变产物分析技术[M]. 北京: 原子能出版社, 2008: 216-233, 338-355. [17] MUSHTAQ A, IQBAL M, MUHAMMAD A. Management of radioactive waste from molybdenum-99 production using low enriched uranium foil target and modified CINTICHEM process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 281(3): 379-392. doi: 10.1007/s10967-009-0009-7 [18] YOUKER A J, CHEMERISOV S D, KALENSKY M, et al. A solution-based approach for Mo-99 production: considerations for nitrate versus sulfate media[J]. Science and Technology of Nuclear Installations, 2013, 2013: 402570. [19] 沈振娟,付庆涛,刘晨光. 微球形氧化铝的制备及其表征研究[J]. 化学研究与应用,2015, 27(2): 215-219. [20] SAMEH A H A. Production cycle for large scale fission Mo-99 separation by the processing of irradiated LEU uranium silicide fuel element targets[J]. Science and Technology of Nuclear Installations, 2013, 2013: 704846. [21] LEE S K, BEYER G J, LEE J S. Development of industrial-scale fission 99Mo production process using low enriched uranium target[J]. Nuclear Engineering and Technology, 2016, 48(3): 613-623. doi: 10.1016/j.net.2016.04.006 [22] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 11-24.