高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于球形氧化铝的模拟溶液堆低浓铀燃料溶液中Mo的提取研究

王海军 孙志中 张劲松 陈云明 罗宁 吴建荣 耿自胜

王海军, 孙志中, 张劲松, 陈云明, 罗宁, 吴建荣, 耿自胜. 基于球形氧化铝的模拟溶液堆低浓铀燃料溶液中Mo的提取研究[J]. 核动力工程, 2024, 45(1): 98-105. doi: 10.13832/j.jnpe.2024.01.0098
引用本文: 王海军, 孙志中, 张劲松, 陈云明, 罗宁, 吴建荣, 耿自胜. 基于球形氧化铝的模拟溶液堆低浓铀燃料溶液中Mo的提取研究[J]. 核动力工程, 2024, 45(1): 98-105. doi: 10.13832/j.jnpe.2024.01.0098
Wang Haijun, Sun Zhizhong, Zhang Jinsong, Chen Yunming, Luo Ning, Wu Jianrong, Geng Zisheng. Research on Extraction of Mo from Simulated Low Enriched Uranium Fuel Solution of Medical Isotope Reactor Based on Spherical Alumina[J]. Nuclear Power Engineering, 2024, 45(1): 98-105. doi: 10.13832/j.jnpe.2024.01.0098
Citation: Wang Haijun, Sun Zhizhong, Zhang Jinsong, Chen Yunming, Luo Ning, Wu Jianrong, Geng Zisheng. Research on Extraction of Mo from Simulated Low Enriched Uranium Fuel Solution of Medical Isotope Reactor Based on Spherical Alumina[J]. Nuclear Power Engineering, 2024, 45(1): 98-105. doi: 10.13832/j.jnpe.2024.01.0098

基于球形氧化铝的模拟溶液堆低浓铀燃料溶液中Mo的提取研究

doi: 10.13832/j.jnpe.2024.01.0098
基金项目: 四川省科技厅重大科技专项(2020ZDZX0010)
详细信息
    作者简介:

    王海军(1992—),男,硕士研究生,现主要从事医用同位素研发,E-mail: 182315996@qq.com

    通讯作者:

    张劲松,E-mail: zjs909@sohu.com

  • 中图分类号: TL92+2

Research on Extraction of Mo from Simulated Low Enriched Uranium Fuel Solution of Medical Isotope Reactor Based on Spherical Alumina

  • 摘要: 为改善医用同位素试验堆在99Mo提取时,氧化铝填料柱易堵塞的情况,进一步提高在低浓铀条件下99Mo的吸附效果,本文采用溶胶凝胶-油柱成型的方法开展氧化铝微球的合成研究,考察其对Mo的吸附行为以及动态吸附条件;并在模拟低浓铀溶液堆燃料溶液中,进行球形氧化铝对Mo的提取研究。结果表明,制备的球形氧化铝具有更大粒径和比表面积,可有效缓解填料柱堵塞问题,并提高Mo的吸附容量。制备的球形氧化铝对Mo的吸附过程符合准二级动力学模型和Freundlich吸附等温线模型。在低浓铀燃料模拟溶液中,球形氧化铝对Mo的回收率为87.4%,杂质也符合药典要求。因此,制备的球形氧化铝有望应用于医用同位素试验堆99Mo提取过程。

     

  • 图  1  球形氧化铝BET测试图

    dV/dlogD表示一定孔段区间孔体积的变化率,cm3/(g·nm)

    Figure  1.  BET Test Diagram of Spherical Alumina

    图  2  2种氧化铝的扫描电镜对比图

    Figure  2.  Comparison of Scanning Electron Microscopy Images of Two Kinds of Alumina

    图  3  氧化铝对Mo吸附量与时间关系图

    Figure  3.  Relationship between Mo Adsorption Capacity of Alumina and Time

    图  4  氧化铝对Mo的3种动力学模型拟合曲线

    Figure  4.  Three Kinetic Model Fitting Curves for Alumina to Mo

    图  5  氧化铝对Mo的吸附等温线

    Figure  5.  Adsorption Isotherms of Mo by Alumina

    图  6  氧化铝对Mo的4种模型拟合曲线

    Figure  6.  Four Model Fitting Curves for Alumina to Mo

    图  7  氧化铝对Mo的动态吸附曲线

    Figure  7.  Dynamic Adsorption Curve of Alumina to Mo

    图  8  低浓铀条件下氧化铝柱Mo的解吸曲线

    Figure  8.  Desorption Curve of Mo by Alumina Column under Low Enriched Uranium Conditions

    表  1  制备球形氧化铝和市售氧化铝参数对比

    Table  1.   Comparison of Parameters between Prepared Spherical Alumina and Commercial Alumina

    材料比表面积/(m2 ∙ g−1)孔容/(cm3 ∙ g−1)孔径/nm粒径/μm
    制备球形氧化铝2800.811.880~200
    市售氧化铝1390.195.3650~100
    下载: 导出CSV
  • [1] VAN DER WALT T N, COETZEE P P. The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use[J]. Radiochimica Acta, 2004, 92(4-6): 251-257. doi: 10.1524/ract.92.4.251.35589
    [2] 贾红梅,刘伯里. 中国放射性药物的现状与展望[J]. 同位素,2011, 24(3): 129-139.
    [3] LIEM P H, TRAN H N, SEMBIRING T M. Design optimization of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production[J]. Progress in Nuclear Energy, 2015, 82: 191-196. doi: 10.1016/j.pnucene.2014.07.040
    [4] ZHUIKOV B L. Production of medical radionuclides in Russia: Status and future—a review[J]. Applied Radiation and Isotopes, 2014, 84: 48-56. doi: 10.1016/j.apradiso.2013.11.025
    [5] SERVICE R F. Scrambling to close the isotope gap[J]. Science, 2011, 331(6015): 277-279. doi: 10.1126/science.331.6015.277
    [6] 邓启民,李茂良,程作用. 医用同位素生产堆(MIPR)生产99Mo的应用前景[J]. 核科学与工程,2006, 26(2): 165-167.
    [7] 高峰,林力,刘宇昊,等. 医用同位素生产现状及技术展望[J]. 同位素,2016, 29(2): 116-120.
    [8] BOLDYREV P P, GOLUBEV V S, MYASNIKOV S V, et al. The Russian ARGUS solution reactor HEU-LEU conversion: LEU fuel preparation, loading and first criticality[C]//Rertr 2014 ― 35th International Meeting on Reduced Enrichment for Research and Test Reactors. Vienna: IAEA Vienna International Center, 2014.
    [9] 邓启民, 程作用, 李茂良, 等. 利用MIPR生产99Mo、131I和89Sr的可行性研究[J]. 核动力工程, 2011, 32(6): 115-118.
    [10] RAO A, SHARMA A K, KUMAR P, et al. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy[J]. Applied Radiation and Isotopes, 2014, 89: 186-191. doi: 10.1016/j.apradiso.2014.02.013
    [11] SANCHEZ V, MILLAN S, FUCUGAUCHI L A. Purification of Mo-99 using Chelex-100 ion exchange resin[J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1989, 33(3): 259-259.
    [12] ROTSCH D A, YOUKER A J, TKAC P, et al. Chemical processing of mini-SHINE target solutions for recovery and purification of Mo-99[C]//Proceedings of Mo-99 2014 Topical Meeting on Molybdenum-99 Technology Development. Washington: Hamilton Crowne Plaza, 2014.
    [13] 肖伦. 放射性同位素技术[M]. 第二版. 北京: 原子能出版社, 2005: 48-50, 338-355.
    [14] HWANG D S, CHOUNG W M, KIM Y K, et al. Separation of 99Mo from a simulated fission product solution by precipitation with a-benzoinoxime[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 254(2): 255-262. doi: 10.1023/A:1021659429587
    [15] MANDAL S, MANDAL A, LAHIRI S. Species dependent extraction of 99Mo[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 861-863. doi: 10.1007/s10967-012-1850-7
    [16] 郭景儒. 裂变产物分析技术[M]. 北京: 原子能出版社, 2008: 216-233, 338-355.
    [17] MUSHTAQ A, IQBAL M, MUHAMMAD A. Management of radioactive waste from molybdenum-99 production using low enriched uranium foil target and modified CINTICHEM process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 281(3): 379-392. doi: 10.1007/s10967-009-0009-7
    [18] YOUKER A J, CHEMERISOV S D, KALENSKY M, et al. A solution-based approach for Mo-99 production: considerations for nitrate versus sulfate media[J]. Science and Technology of Nuclear Installations, 2013, 2013: 402570.
    [19] 沈振娟,付庆涛,刘晨光. 微球形氧化铝的制备及其表征研究[J]. 化学研究与应用,2015, 27(2): 215-219.
    [20] SAMEH A H A. Production cycle for large scale fission Mo-99 separation by the processing of irradiated LEU uranium silicide fuel element targets[J]. Science and Technology of Nuclear Installations, 2013, 2013: 704846.
    [21] LEE S K, BEYER G J, LEE J S. Development of industrial-scale fission 99Mo production process using low enriched uranium target[J]. Nuclear Engineering and Technology, 2016, 48(3): 613-623. doi: 10.1016/j.net.2016.04.006
    [22] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 11-24.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  15
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-21
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回