Study on Tensile Behavior of Small Size Specimen of A508-III Steel Based on Finite Element Aided Testing Method
-
摘要: 为了克服拉伸样品尺寸减小所带来的尺寸效应的影响,本文对A508-Ⅲ钢小尺寸样品的拉伸行为进行了研究。通过改变A508-Ⅲ钢的热处理温度制备了不同晶粒尺寸和样品厚度的小尺寸样品,进行了小尺寸样品的室温拉伸测试,分析了晶粒尺寸和样品厚度对小尺寸样品拉伸力学性能的影响,并揭示了其潜在的拉伸尺寸效应机理。结果表明,由于小尺寸样品厚度和晶粒尺寸的变化,导致其拉伸力学性能表现出明显的尺寸效应;通过引入综合表征样品特征尺寸和晶粒尺寸效应的影响参数,构建了考虑尺寸效应的Swift力学本构模型;采用有限元辅助测试方法确定了小尺寸样品的延性损伤演变参数,数值与实验结果误差小于3%;基于建立的力学本构模型,利用有限元方法预测了小尺寸样品的拉伸力学性能,构建了其屈服强度与抗拉强度的归一化模型,以期为小尺寸样品的工程应用提供借鉴。Abstract: In order to overcome the influence of size effect brought about by the reduction in the size of tensile specimen, the tensile properties have been investigated for small size specimens of A508-III steel in this paper. The small size specimens of A508-III steel with varying grain sizes and specimen thicknesses were prepared by altering the heat treatment temperature, and their tensile tests were conducted at room temperature. The effects of grain size and thickness on the tensile mechanical properties of small size specimens were analyzed and the underlying mechanism of the potential tensile size effect was revealed. The results indicate that, due to the changes in the thickness and grain size of small size specimens, the tensile mechanical property exhibits an obvious size effect. A Swift mechanical constitutive model considering size effects was developed by introducing influence parameters that comprehensively characterize the specimen feature size and grain size effects. The ductile damage evolution parameters of the specimens were determined using the finite element aided testing (FAT) method, and the error between numerical and experimental results was less than 3%. Based on the established mechanical constitutive model, the tensile mechanical properties of the small size specimens were predicted using the finite element method, and the normalized models of their yield strength and tensile strength were constructed, so as to provide reference for the engineering application of small size specimens.
-
Key words:
- A508-Ⅲ steel /
- Small size specimens /
- Size effect /
- Normalization model
-
表 1 A508-Ⅲ钢的化学成分
Table 1. Chemical Composition of A508-III Steel
元素 C Si Mn Cr Mo Ni V Al N P S Fe 质量分数/% 0.175 0.205 1.59 0.137 0.482 0.731 0.002 0.011 0.012 0.005 0.003 余量 表 2 实验获得的不同热处理温度和厚度SS-J小尺寸样品的拉伸力学性能
Table 2. Tensile Mechanical Properties of SS-J Specimens with Different Heat Treatment Temperatures and Thicknesses obtained from Experiments
温度/
℃厚度/
mm弹性模
量/GPa屈服强
度/MPa抗拉强
度/MPa均匀延
伸率/%总延伸
率/%900 0.30 123 618 696 6.2 11.0 0.50 125 626 714 6.9 14.8 0.75 122 639 729 6.6 17.5 950 0.30 144 584 692 6.7 11.1 0.50 142 600 707 7.2 15.0 0.75 149 612 717 7.0 17.6 1000 0.30 141 562 672 6.3 11.2 0.50 141 596 698 7.4 13.3 0.75 148 608 712 7.3 17.9 表 3 不同热处理温度和厚度SS-J小尺寸样品的尺寸效应参数λ值
Table 3. λ Value of SS-J Specimens with Different Heat Treatment Temperatures and Thicknesses
小尺寸样品 900℃ 950℃ 1000℃ 0.30 mm 0.50 mm 0.75 mm 0.30 mm 0.50 mm 0.75 mm 0.30 mm 0.50 mm 0.75 mm λ /mm-2 481.97 334.81 261.22 426.22 296.08 231.01 262.97 182.68 142.53 表 4 不同热处理温度下考虑小尺寸样品尺寸效应的Swift力学本构模型参数
Table 4. Swift Model Parameters Considering Size Effect of SS-J Specimens under Different Heat Treatment Temperatures
热处理温度/℃ a b c n ε0 900 330.40 18.80 117839.20 0.1073 0.0045 950 332.80 20.10 105342.60 0.1146 0.0045 1000 328.80 25.00 64044.00 0.1145 0.0045 表 5 有限元方法获得的不同热处理温度和厚度SS-J小尺寸样品的拉伸力学性能
Table 5. Tensile Mechanical Properties of SS-J Specimens with Different Heat Treatment Temperatures and Thicknesses from Finite Element Method
温度/
℃厚度/
mm弹性模
量/GPa屈服强
度/MPa抗拉强
度/MPa均匀延
伸率/%总延伸
率/%900 0.20 115 612 687 6.5 12.5 0.40 108 608 701 7.7 14.4 0.60 101 625 730 7.6 18.5 950 0.20 160 539 675 6.9 13.2 0.40 137 581 680 7.9 15.4 0.60 142 611 716 7.8 18.6 1000 0.20 102 520 621 7.1 13.1 0.40 130 563 674 8.2 15.5 0.60 136 593 695 7.2 19.0 -
[1] 李承亮,张明乾. 压水堆核电站反应堆压力容器材料概述[J]. 材料导报,2008, 22(9): 65-68. [2] 何西扣,刘正东,赵德利,等. 中国核压力容器用钢及其制造技术进展[J]. 中国材料进展,2020, 39(7-8): 509-518. [3] AHN Y S, KIM H D, BYUN T S, et al. Application of intercritical heat treatment to improve toughness of SA508 Cl. 3 reactor pressure vessel steel[J]. Nuclear Engineering and Design, 1999, 194(2-3): 161-177. doi: 10.1016/S0029-5493(99)00196-X [4] 林赟,宁广胜,张长义,等. 国产A508-3钢辐照性能[J]. 原子能科学技术,2016, 50(2): 204-207. [5] 林赟,佟振峰,宁广胜,等. 国产A508-3钢辐照前后小样品断裂韧性测试分析[J]. 核动力工程,2017, 38(S1): 74-76. [6] 王成龙,白冰,张长义,等. 10×1019cm-2快中子辐照国产A508-3钢材料的小冲杆试验研究[J]. 原子能科学技术,2020, 54(4): 683-687. [7] 赵宾,王刚,李萍. 基于尺寸效应的镁合金箔材本构关系的研究[J]. 精密成形工程,2014, 6(4): 58-62. [8] KOHNO Y, KOHYAMA A, HAMILTON M L, et al. Specimen size effects on the tensile properties of JPCA and JFMS[J]. Journal of Nuclear Materials, 2000, 283-287: 1014-1017. doi: 10.1016/S0022-3115(00)00245-2 [9] LUCAS G E, ODETTE G R, MATSUI H, et al. The role of small specimen test technology in fusion materials development[J]. Journal of Nuclear Materials, 2007, 367-370: 1549-1556. doi: 10.1016/j.jnucmat.2007.04.034 [10] GEIGER M, VOLLERTSEN F, KALS R. Fundamentals on the manufacturing of sheet metal microparts[J]. CIRP Annals, 1996, 45(1): 277-282. doi: 10.1016/S0007-8506(07)63063-7 [11] MAHABUNPHACHAI S, KOÇ M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales[J]. International Journal of Machine Tools and Manufacture, 2008, 48(9): 1014-1029. doi: 10.1016/j.ijmachtools.2008.01.006 [12] KIM G Y, NI J, KOÇ M. Modeling of the size effects on the behavior of metals in microscale deformation processes[J]. Journal of Manufacturing Science and Engineering, 2007, 129(3): 470-476. doi: 10.1115/1.2714582 [13] LAI X M, PENG L F, HU P, et al. Material behavior modelling in micro/meso-scale forming process with considering size/scale effects[J]. Computational Materials Science, 2008, 43(4): 1003-1009. doi: 10.1016/j.commatsci.2008.02.017 [14] WANG Y, DONG P L, XU Z Y, et al. A constitutive model for thin sheet metal in micro-forming considering first order size effects[J]. Materials & Design, 2010, 31(2): 1010-1014. [15] 钟巍华,佟振峰,张长义,等. 小冲杆测试辐照对反应堆压力容器钢力学性能的影响[J]. 金属学报,2011, 47(9): 1205-1209. [16] 钟巍华,佟振峰,宁广胜,等. 辐照用小尺寸样品力学性能表征技术研究进展[J]. 原子能科学技术,2019, 53(10): 1894-1905. [17] 周天华,李文超,管宇,等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学,2014, 31(7): 146-155. [18] 彭云强,蔡力勋,包陈,等. 基于材料全程本构关系对延性断裂韧性的数值模拟方法与应用[J]. 工程力学,2016, 33(5): 11-17.