Analysis and Optimization of Key Factors Affecting the Expansion Quality of Threaded Sleeve and Guide Pipe
-
摘要: 为探究胀杆加载距离以及两管间摩擦因数对核燃料组件支撑骨架中螺纹套管与导向管之间胀接质量的影响,通过建立螺纹套管与导向管的等比例数值模型,并设计双因素四水平的正交试验,在给定工况下采用有限元分析方法对不同试验组合进行数值分析。分析结果表明,胀杆加载距离和两管间摩擦因数对胀接质量均有显著影响。为提高优化效率,结合Kriging模型并利用粒子群优化算法以最大减薄率≤10%为约束,在给定的胀杆加载距离和两管间摩擦因数区间内进行优化求解,获得优化胀接参数为胀杆加载距离28.42 mm、摩擦因数0.14。本文研究为提升螺纹套管与导向管胀接质量和改善胀接工艺提供了理论参考。Abstract: This paper aims to explore the effects of the loading distance of the expansion rod and the friction coefficient between two pipes on the expansion quality between the threaded sleeve and the guide pipe in the support frame of nuclear fuel assembly. Based on the established equal scale numerical model of the threaded sleeve and guide pipe and the designed two-factor four-level orthogonal test, the finite element analysis method is used to numerically analyze different test combinations under given conditions. The test results show that the loading distance of the expansion rod and the friction coefficient between two pipes have a significant influence on the quality of the expansion joint. In order to improve the optimization efficiency, combined with Kriging model and particle swarm optimization algorithm, with the maximum thinning rate ≤10% as the constraint, the optimal solution is carried out within the given loading distance of expansion rod and the friction coefficient between two pipes, and the obtained loading distance of expansion rod is 28.42 mm and the friction coefficient is 0.14. The research in this paper provides a theoretical reference for improving the quality of expansion joint between the threaded sleeve and the guide pipe and improving the expansion joint process.
-
表 1 材料属性
Table 1. Material Properties
材料 物理属性 数值 M42 密度/(kg·m−3) 7800 杨氏模量/${\rm{GPa}}$ 210 泊松比 0.3 屈服极限/${\rm{MPa}}$ 405 316L 密度/(kg·m−3) 7980 杨氏模量/${\rm{GPa}}$ 195 泊松比 0.31 屈服极限/${\rm{MPa}}$ 310 Zr-4 密度/(kg·m−3) 7750 杨氏模量/${\rm{GPa}}$ 194 泊松比 0.31 屈服极限/${\rm{MPa}}$ 345 表 2 正交试验因素及水平
Table 2. Orthogonal Test Factors and Levels
水平 胀杆加载距离/mm 摩擦因数 1 24 0.08 2 26 0.10 3 28 0.12 4 30 0.14 表 3 试验方案及结果
Table 3. Test Scheme and Results
试验
编号胀杆加
载距离/mm两管间
摩擦因数最大减
薄率/%接触力/
N胀包
尺寸/mm1 24 0.08 8.311 25.507 14.365 2 24 0.10 8.583 55.354 14.365 3 24 0.12 8.816 89.259 14.362 4 24 0.14 8.670 121.437 14.369 5 26 0.08 9.203 31.309 14.466 6 26 0.10 9.326 53.483 14.462 7 26 0.12 9.480 58.807 14.461 8 26 0.14 9.704 93.326 14.463 9 28 0.08 9.518 21.803 14.575 10 28 0.10 10.300 60.010 14.572 11 28 0.12 9.689 100.995 14.568 12 28 0.14 9.768 128.934 14.566 13 30 0.08 10.151 24.665 14.673 14 30 0.10 10.512 64.761 14.665 15 30 0.12 10.912 102.036 14.660 16 30 0.14 11.461 141.170 14.658 表 4 两因素对最大减薄率影响的方差分析结果
Table 4. Variance Analysis Results for the Influence of Two-factor on Maximum Thinning Rate
来源 自由度 偏差平方和 P 胀杆加载距离 3 9.6822 2.16×10−5 两管间摩擦因数 3 0.7792 0.0889 表 5 两因素对接触力影响的方差分析结果
Table 5. Variance Analysis Results for the Influence of Two-factor on Contact Force
来源 自由度 偏差平方和 P 胀杆加载距离 3 1267 0.094 两管间摩擦因数 3 19927 9.13×10−6 表 6 两因素对胀包尺寸影响的方差分析结果
Table 6. Variance Analysis Results for the Influence of Two-factor on Bulge Size
来源 自由度 偏差平方和 P 胀杆加载距离 3 0.2020 4.8×10−15 两管间摩擦因数 3 0.0001 0.084 -
[1] 粟敏,李垣明,陈平,等. 非均匀辐照环境下燃料组件变形的初步数值模拟[J]. 核动力工程,2017, 38(S2): 7-10. [2] 朱跃钊,蒋金柱,桑芝富. 影响胀接结构可靠性的几个因素[J]. 压力容器,2005, 22(1): 12-15,52. [3] 盛国福,蔡权,钟建伟. 机械加工工艺对螺纹套管胀接结构拉脱力的影响分析[J]. 机械制造,2020, 58(1): 79-82,89. [4] 钟建伟,盛国福,蔡权,等. 压水堆燃料组件螺纹套管与导向管胀接影响因素研究[J]. 工程建设与设计,2020(16): 115-116. [5] CAI D, LIANG J, OU H, et al. Mechanical properties and joining mechanism of electrohydraulic expansion joints for 6063 aluminum alloy/304 stainless steel thin-walled pipes[J]. Thin-Walled Structures, 2021, 161: 107427. doi: 10.1016/j.tws.2020.107427 [6] 文爽,曾谢虎,文青龙,等. 燃料组件典型栅元湍流激振数值研究[J]. 核动力工程,2023, 44(1): 9-16. [7] 付强,闵远胜,刘川,等. 反应堆压力容器内部大尺寸环形异种金属焊缝残余应力分布研究[J]. 核动力工程,2022, 43(3): 123-128. [8] FUHG J N, FAU A, NACKENHORST U. State-of-the-art and comparative review of adaptive sampling methods for Kriging[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2689-2747. doi: 10.1007/s11831-020-09474-6 [9] BUHMANN M D. Radial basis functions[J]. Acta Numerica, 2000, 9: 1-38. doi: 10.1017/S0962492900000015 [10] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567. doi: 10.1038/nbt1206-1565 [11] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408. doi: 10.1007/s00500-016-2474-6 [12] 印雄飞,叶又,彭颖红,等. 板料成形数值模拟中计算时间的控制[J]. 模具工业,1999(7): 11-13. doi: 10.16787/j.cnki.1001-2168.dmi.1999.07.003 [13] 蒋祥荣. 级间管—翅换热器的机械胀接模拟与实验研究[D]. 上海: 上海交通大学, 2015.