Development of Test Platform for LBE Aerosol Kinetics and Preliminary Parameter Measurement
-
摘要: 铅铋快堆的一回路冷却剂液态铅铋合金(LBE)受中子辐照会产生放射性核素210Po,210Po具有一定挥发性,有必要深入研究210Po的迁移扩散行为。气溶胶是易挥发放射性核素释放的主要载体,本文基于国内外关于反应堆气溶胶实验平台的设计运行经验研制了LBE气溶胶动力学实验平台,通过结合扫描电迁移率法和光学散射法,实现了对LBE气溶胶粒子计数与粒径分布的广谱测量。测量结果表明,LBE气溶胶的粒径分布主要为纳米级。通过对测量结果的数据处理,初步开展了LBE气溶胶动力学分析,从而为铅铋快堆放射性气溶胶的后续安全分析提供关键参数。Abstract: In Lead-Bismuth Fast Reactors, the primary coolant liquid lead-bismuth eutectic (LBE) is subject to neutron irradiation, which generates the radioactive nuclide polonium (210Po). Given the volatility of 210Po, it is essential to thoroughly investigate its migration and diffusion behavior. Aerosols are the primary carriers of volatile radioactive nuclides. Drawing on domestic and international experience in the design and operation of reactor aerosol experimental platforms, this paper presents the development of an LBE aerosol kinetics experimental platform. By combining scanning electrical mobility and optical scattering methods, a broad-spectrum measurement of LBE aerosol particle count and size distribution was achieved. The results indicate that the particle size distribution of LBE aerosols is mainly at the nano-level. Preliminary LBE aerosol kinetics analysis was conducted through data processing of the measurement results, thereby providing key parameters for subsequent safety analysis of radioactive aerosols in Lead-Bismuth Fast Reactors.
-
表 1 LBE气溶胶环境腔实验工况
Table 1. Test Condition of LBE Aerosol Generation Environment Chamber
实验条件 具体参数 环境腔尺寸(长×宽×高) 2000 mm×500 mm×1000 mm 湿度范围 30%~100% RH;
控制精度+2%~−3% RH温度范围 283~343 K;
控制精度±2 KRH—相对湿度 表 2 气溶胶测量系统参数
Table 2. Parameters of Aerosol Measurement System
参量名称 扫描电迁移率法 光学散射法 设备型号 U-SMP Promo 2000 粒径范围 8 ~1200 nm 0.2~10 μm;0.3~17 μm;
0.6 ~40 μm;2 ~100 μm峰值颗粒数/cm−3 0~108 1~106 体积流量/(L·min−1) 2.5~14 5 表 3 载气体积流量的敏感性实验
Table 3. Sensitivity Experiment of Carrier Gas Flow Rate
实验编号 1 2 3 载气体积流量/sccm 20 50 100 载气种类 Ar/1%H2 Ar/1%H2 Ar/1%H2 蒸发温度/K 873.5 873.5 873.5 环境腔温度/K 298 298 298 峰值颗粒粒径/nm 30.5 30.5 32.8 峰值颗粒数/cm−3 4169 4154 4256 表 4 载气种类的敏感性实验
Table 4. Sensitivity Experiment of Carrier Gas Type
实验编号 4 5 6 蒸发温度/K 873.5 873.5 873.5 载气种类 Ar/1%H2 N2 He 载气体积流量/sccm 100 100 100 环境腔温度/K 298 298 298 峰值颗粒粒径/nm 26.4 30.5 12.8/89.8 峰值颗粒数/cm−3 500 643 143/212 表 5 LBE环境气溶胶粒径测量实验参数
Table 5. Experimental Parameters of LBE Aerosol Particle Size Measurement in Real Environment
实验编号 7 8 9 样品温度/K 873.5 载气种类 Ar/1%H2 Ar/1%H2 Ar/1%H2 载气体积流量/sccm 100 100 100 伴热温度/K 413 413 环境腔温度/K 298 298 298 -
[1] CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of Generation IV International Forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042 [2] DENG L L, WANG Y Q, ZHAI Z, et al. Multi-physics model development for polonium transport behavior in a lead-cooled fast reactor[J]. Frontiers in Energy Research, 2021, 9: 711916. doi: 10.3389/fenrg.2021.711916 [3] LARSON C L. Polonium extraction techniques for a lead-bismuth cooled fast reactor[D]. Cambridge: Massachusetts Institute of Technology, 2002. [4] LI N, YEFIMOV E, PANKRATOV D. Polonium release from an ATW burner system with liquid lead-bismuth coolant:LA-UR-98-1995[R]. Washington: USDOE Assistant Secretary for Management and Administration, 1998. [5] BUONGIORNO J. Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation[D]. Cambridge: Massachusetts Institute of Technology, 2001. [6] 陈林林,孙雪霆,魏严凇,等. 安全壳内气溶胶扩散泳行为的试验方法研究[J]. 辐射防护,2017, 37(1): 45-49. [7] LUO X W, YU S Y. Deposition of particles in turbulent pipe flow[J]. China Particuology, 2006, 4(1): 31-34. doi: 10.1016/S1672-2515(07)60230-9 [8] Mäkynen J M, JOKINIEMI J K, AHONEN P P, et al. AHMED experiments on hygroscopic and inert aerosol behaviour in LWR containment conditions: Experimental results[J]. Nuclear Engineering and Design, 1997, 178(1): 45-59. doi: 10.1016/S0029-5493(97)00174-X [9] NEA. International standard problem ISP37: VANAM M3 - A Multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report[R]. Paris:OECD, 1996. [10] 肖增光,孙雪霆,陈林林,等. 安全壳内气溶胶沉积试验的浓度测点设计[J]. 核安全,2017, 16(1): 82-85,94. doi: 10.16432/j.cnki.1672-5360.2017.01.013 [11] SNEPVANGERS L J M, VAN DE VATE J F. Diffusiophoresis of fission product aerosol in an LWR containment after core meltdown:EUR-11376[R]. Luxembourg: Commission of the European Communities, 1987. [12] CLEMENT B, HANNIET-GIRAULT N, REPETTO G, et al. LWR severe accident simulation: synthesis of the results and interpretation of the first Phebus FP experiment FPT0[J]. Nuclear Engineering and Design, 2003, 226(1): 5-82. doi: 10.1016/S0029-5493(03)00157-2 [13] KRISCHER W, RUBINSTEIN M C. The phebus fission product project: presentation of the experimental programme and test facility[M]. London: CRC Press, 1992: 6-246. [14] 陈林林,魏严凇,史晓磊,等. 安全壳内剥蚀引起的气溶胶颗粒再悬浮[J]. 中国粉体技术,2020, 26(5): 1-6. doi: 10.13732/j.issn.1008-5548.2020.05.001 [15] HAN S, LI Y, WEN G, et al. Study on thermophoretic deposition of micron-sized aerosol particles by direct numerical simulation and experiments[J]. Ecotoxicology and Environmental Safety, 2022, 233: 113316. doi: 10.1016/j.ecoenv.2022.113316 [16] 王善普,佟立丽,曹学武. 钢制安全壳窄缝内气溶胶冷凝滞留实验研究[J]. 核动力工程,2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128 [17] 于汇宇,谷海峰,孙中宁,等. 喷淋去除气溶胶的模型及实验研究[J]. 哈尔滨工程大学学报,2023, 44(5): 815-822. doi: 10.11990/jheu.202108021 [18] 向晓东. 气溶胶科学技术基础[M]. 北京: 中国环境科学出版社,2012: 21-27. [19] MPPD: Multiple-path particle dosimetry model (2023) ARA,V3.04. Available at: https://www.ara.com/mppd/ (Accessed: 09 March 2023).