The pH and Iodine Diffusion Model for IRWST after LOCA Accident of HPR1000
-
摘要: “华龙一号”地坑设置非能动pH值调节篮,加入碱性添加剂控制大破口失水事故(LOCA)后安全壳内置换料水箱(IRWST)pH,从而降低壳内气相碘浓度,预测事故后pH和碘浓度对事故源项和放射性分析至关重要。本文针对LOCA后再循环水流程,结合碘的气液分配、双膜理论以及碘形态与pH关系,建立宏观瞬态模型,实现事故后IRWST瞬态pH、物质浓度以及安全壳内气液两相碘浓度计算。对比Visual MINTEQ软件结果验证了模型pH计算,选取工况参数代入模型分析影响因素,结果正确反映pH与碘浓度的关系,证明该模型具备预测事故后pH和碘浓度的能力。
-
关键词:
- 大破口失水事故(LOCA) /
- 安全壳 /
- 碘 /
- pH /
- “华龙一号”
Abstract: A passive pH adjustment basket is set in the HPR1000 pit to control the pH of the in-containment refueling water storage tank (IRWST) after the loss of coolant accident (LOCA) by adding alkaline additives, so as to reduce the concentration of gaseous iodine in the containment. Predicting the pH and iodine concentration after an accident is critical for accident source term and radioactive analysis. In this paper, aiming at the recirculation water flow after LOCA, combined with the gas-liquid distribution of iodine and the two-film theory and the relationship between iodine form and pH, a macro transient model is established to realize the calculation of IRWST transient pH, substance concentration and gas-liquid two-phase iodine concentration in containment after the accident. By comparing with the results of Visual MINTEQ software, the pH calculation part of the model is verified. The condition parameters are substituted into the model to analyze the influencing factors. The results can correctly show the relationship between pH and iodine concentration, which proves that the model has the ability to predict pH and iodine concentration after accident.-
Key words:
- Loss of coolant accident (LOCA) /
- Containment /
- Iodine /
- pH /
- HPR1000
-
表 1 酸碱源项
Table 1. Acid-base Source Terms
物质 来源 H3BO3 安注箱、RBS、冷却剂本身、IRWST HI 堆芯释放的碘溶于水 HNO3 空气和水受辐照产生 HCl 电缆绝缘层等有机物受辐照产生氯气,氯气和水反应产生 H2CO3 水吸收二氧化碳产生 TSP pH调节篮 NaOH 一回路中pH调节、喷淋 CsOH 堆芯释放的铯溶于水 LiOH 一回路冷却剂 表 2 不同工况下混合物质体系浓度
Table 2. Concentration of Mixed Material Systems under Different Conditions
工况序号 物质浓度/(mol·L−1) H3BO3 HNO3 HCl TSP NaOH CsOH LiOH HI C1 0.4 10−4 10−5 10−4 10−4 10−4 10−4 10−3 C2 0.4 10−5 10−3 10−4 10−4 10−4 10−4 10−4 C3 0.2 10−5 10−5 10−4 10−4 10−4 10−4 0 C4 0.4 10−5 10−5 10−2 10−4 10−4 10−4 0 C5 0.4 10−5 10−5 10−4 10−4 10−4 10−5 0 C6 0.5 10−4 10−4 10−4 10−4 10−4 0 0 C7 0.4 10−5 10−5 10−3 10−3 10−4 0 10−4 C8 0.4 10−5 10−5 10−3 10−4 10−3 0 10−4 -
[1] 国家核安全局. 核动力厂辐射防护设计: HAD 102/12-2019[S]. 北京: 国家核安全局. 2019. [2] Nuclear Regulatory Commission. Alternative radiological source terms for evaluating design basis accidents at nuclear power reactors[R]. Rockville: US Nuclear Regulatory Commission, 2000. [3] 宋代勇,赵斌,袁霞,等. “华龙一号”能动与非能动相结合的安全系统设计[J]. 中国核电,2017, 10(4): 468-471. [4] 易飞,顾传俊. 华龙一号能动与非能动安全系统介绍[J]. 机电信息,2016(12): 56-57. doi: 10.3969/j.issn.1671-0797.2016.12.030 [5] 王琳,段永强,崔怀明. 磷酸三钠在安全壳喷淋系统中的应用研究[J]. 核动力工程,2011, 32(2): 137-140. [6] HENRY W. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures[J]. Proceedings of the Royal Society of London, 1832, 1: 103-104. [7] MACKAY D, SHIU W Y. A critical review of Henry's law constants for chemicals of environmental interest[J]. Journal of Physical and Chemical Reference Data, 1981, 10(4): 1175-1199. doi: 10.1063/1.555654 [8] OTHMAN N S, HASAN S H, SURCHI K M. Indirect spectrophotometric determination of folic acid based on the oxidation reaction and studying some of the thermodynamic parameters[J]. Journal of Zankoy Sulaimani-Part A, 2015, 17(1): 61-70. [9] BEAHM E C, LORENZ R A, WEBER C F. Iodine evolution and pH control[R]. Washington: U. S. Nuclear Regulatory Commission, 1993. [10] Entergy Operations Inc. Energy operations engineering report for suppression pool pH and iodine re-evolution methodology:GGNS-98-0039[R]. Entergy Operations Inc, Los Angeles, USA,2000. [11] BEAHM E C, WEBER C F. Iodine volatility and pH control in the AP-600 reactor: ORNL/TM-13555[R]. Oak Ridge: Oak Ridge National Laboratory, 1998. [12] BEAHM E C, WEBER C F. Iodine revolatilization in a grand gulf loca: ORNL/M-6544[R]. Oak Ridge: Oak Ridge National Laboratory, 1999. [13] KIM T H, JEONG J H. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part I: pH estimation of a solution with various chemicals[J]. Annals of Nuclear Energy, 2016, 87: 324-330. doi: 10.1016/j.anucene.2015.09.013 [14] KIM T H, JEONG J H. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part II: Evaluation of pH and iodine re-evolution[J]. Annals of Nuclear Energy, 2016, 88: 83-94. doi: 10.1016/j.anucene.2015.10.034 [15] WEBER C F. Calculation of absorbed doses to water pools in severe accident sequences:NUREGICR-5808 ORNL/TM-11970[R]. Washington: Nuclear Regulatory Commission, 1991. [16] SOFFER L, BURSON S B, FERRELL C M, et al. Accident source terms for light-water nuclear power plants: NUREG-1465[R]. Washington: U. S. Nuclear Regulatory Commission, 1995. [17] WINTERS J W, VIJUK R P, CUMMINS W E. AP1000 design control document:EPS-GW-GL-700[R]. Pittsbrugh: Weistinghouse Electric Company LLC, 2004. [18] KOUKKARI P, PAJARRE R. Calculation of constrained equilibria by Gibbs energy minimization[J]. Calphad, 2006, 30(1): 18-26. doi: 10.1016/j.calphad.2005.11.007 [19] YOON H. The prediction of pH by Gibbs free energy minimization in the sump solution under LOCA condition of PWR[J]. Nuclear Engineering and Technology, 2013, 45(1): 107-114. doi: 10.5516/NET.03.2011.051 [20] NICHITA D V, GOMEZ S, LUNA E. Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method[J]. Computers & Chemical Engineering, 2002, 26(12): 1703-1724. [21] WEBER C F, BEAHM E C. Calculation of pH and iodine volatility under reactor accident conditions: ORNL/NRC/LTR-99/3[R]. Oak Ridge: Oak Ridge National Laboratory, 1999.