高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温管道热损伤共线混频非线性超声检测方法

焦敬品 李智强 孙俊俊 万国荣 李骥 何存富 吴斌

焦敬品, 李智强, 孙俊俊, 万国荣, 李骥, 何存富, 吴斌. 高温管道热损伤共线混频非线性超声检测方法[J]. 核动力工程, 2024, 45(1): 218-224. doi: 10.13832/j.jnpe.2024.01.0218
引用本文: 焦敬品, 李智强, 孙俊俊, 万国荣, 李骥, 何存富, 吴斌. 高温管道热损伤共线混频非线性超声检测方法[J]. 核动力工程, 2024, 45(1): 218-224. doi: 10.13832/j.jnpe.2024.01.0218
Jiao Jingpin, Li Zhiqiang, Sun Junjun, Wan Guorong, Li Ji, He Cunfu, Wu Bin. Nonlinear Ultrasonic Detection Method of Collinear Wave Mixing for Thermal Damage in High Temperature Pipeline[J]. Nuclear Power Engineering, 2024, 45(1): 218-224. doi: 10.13832/j.jnpe.2024.01.0218
Citation: Jiao Jingpin, Li Zhiqiang, Sun Junjun, Wan Guorong, Li Ji, He Cunfu, Wu Bin. Nonlinear Ultrasonic Detection Method of Collinear Wave Mixing for Thermal Damage in High Temperature Pipeline[J]. Nuclear Power Engineering, 2024, 45(1): 218-224. doi: 10.13832/j.jnpe.2024.01.0218

高温管道热损伤共线混频非线性超声检测方法

doi: 10.13832/j.jnpe.2024.01.0218
基金项目: 国家自然科学基金(11972053,12274012)
详细信息
    作者简介:

    焦敬品(1973—),女,教授,博士研究生导师,主要从事现代测控技术与方法、无损检测新技术、现代信号分析与处理技术、新型传感器技术等方面的研究,E-mail: jiaojp@bjut.edu.cn

  • 中图分类号: TB553;TM623.7;TL38

Nonlinear Ultrasonic Detection Method of Collinear Wave Mixing for Thermal Damage in High Temperature Pipeline

  • 摘要: 面向电厂安全运行需要,开展了高温管道热损伤共线混频非线性超声检测方法研究。通过扫频实验,确定了显著混频效应的激励条件,并对4个不同热损伤程度的Super304H管材进行非线性超声检测实验。对检测信号进行双谱分析,研究和频分量的双谱值在相位区间的分布,确定了热损伤引起的非线性响应在相位区间上的分布范围。结果表明,依次提取的非线性声学系数与试件的热损伤程度呈现很好的相关性,可用于管道热损伤的表征。研究工作为电厂高温管道热损伤检测提供了可行方案。

     

  • 图  1  共线混频非线性超声检测实验系统示意图

    R—接收探头;T—发射探头;f3—混频分量

    Figure  1.  Schematic Diagram of the Experimental System

    图  2  探头实物图

    Figure  2.  Photo of Transducers

    图  3  试件实物图

    Figure  3.  Photo of Specimens

    图  4  试件金相图

    Figure  4.  Metallographic Microscope Images of Specimens

    图  5  换能器频率响应

    Figure  5.  Frequency Responses of Transducers

    图  6  混频幅值随激励信号频率变化的关系

    Figure  6.  Relationship between Mixing Amplitude and the Excitation Frequency

    图  7  典型信号时域波形

    Figure  7.  Time Domain Waves of Typical Signal

    图  8  检测信号双谱估计

    Figure  8.  Bispectrums of the Detection Signal

    图  9  和频处双谱值的极坐标

    Figure  9.  Polar Coordinate Representation for Peaks at Sum-Frequency

    图  10  不同相位下和频处双谱值的变化趋势

    Figure  10.  Change of Bispectral Peaks of Sum Frequency under Different Phase

    图  11  不同试件的非线性声学系数

    Figure  11.  Nonlinear Acoustic Coefficients of Different Specimens       

  • [1] KIM S W, JEON B G, HAHM D G, et al. Failure criteria evaluation of steel pipe elbows in nuclear power plant piping systems using cumulative damage models[J]. Thin-Walled Structures, 2023, 182: 110250. doi: 10.1016/j.tws.2022.110250
    [2] 国家能源局. 火力发电厂金属材料选用导则: DL/T 715-2015[S]. 北京: 中国电力出版社,2015: 1.
    [3] 国家能源局. 压水堆核电厂常规岛金属材料选用导则: NB/T 25078—2018[S]. 北京: 中国电力出版社,2018: 1.
    [4] 杨健,朱文韬. 蒸汽发生器传热管诱发破裂风险评估[J]. 核动力工程,2017, 38(1): 51-55. doi: 10.13832/j.jnpe.2017.01.0051
    [5] OH S, CHOI G, LEE D, et al. Analysis of eddy-current probe signals in steam generator U-bend tubes using the finite element method[J]. Applied Sciences, 2021, 11(2): 696. doi: 10.3390/app11020696
    [6] ZHANG Q D, NIVERTY S, SINGARAVELU A S S, et al. Microstructure and micropore formation in a centrifugally-cast duplex stainless steel via X-ray microtomography[J]. Materials Characterization, 2019, 148: 52-62. doi: 10.1016/j.matchar.2018.12.009
    [7] OH S B, KIM J, LEE J Y, et al. Analysis of pipe thickness reduction according to pH in FAC facility with in situ ultrasonic measurement real time monitoring[J]. Nuclear Engineering and Technology, 2022, 54(1): 186-192. doi: 10.1016/j.net.2021.07.048
    [8] NARAYANAN M M, ARJUN V, KUMAR A. Influence of thermal expansion bend and tubesheet geometry on guided wave inspection of steam generator tubes of a fast breeder reactor[J]. Structural Health Monitoring, 2021, 20(6): 3288-3308. doi: 10.1177/1475921720983520
    [9] WANG J J, WEN Z X, PEI H Q, et al. Thermal damage evaluation of nickel-based superalloys based on ultrasonic nondestructive testing[J]. Applied Acoustics, 2021, 183: 108329. doi: 10.1016/j.apacoust.2021.108329
    [10] DIB G, ROY S, RAMUHALLI P, et al. In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system[J]. Nuclear Engineering and Technology, 2019, 51(3): 867-876. doi: 10.1016/j.net.2018.12.003
    [11] MAEV R G, SEVIARYN F. Applications of non-linear acoustics for quality control and material characterization[J]. Journal of Applied Physics, 2022, 132(16): 161101. doi: 10.1063/5.0106143
    [12] SAMPATH S, SOHN H. Cubic nonlinearity parameter measurement and material degradation detection using nonlinear ultrasonic three-wave mixing[J]. Ultrasonics, 2022, 121: 106670. doi: 10.1016/j.ultras.2021.106670
    [13] KIM J, KIM J G, KONG B, et al. Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel[J]. Nuclear Engineering and Technology, 2020, 52(3): 621-625. doi: 10.1016/j.net.2019.09.004
    [14] MAO H L, ZHANG Y H, LI X X, et al. Fatigue crack detection and fatigue damage imaging using the non-collinear transverse wave mixing technique[J]. Nondestructive Testing and Evaluation, 2019, 34(1): 1-12. doi: 10.1080/10589759.2018.1533011
    [15] MAO H L, ZHANG Y H, LI X X, et al. Location and length measurement of invisible fatigue crack in metal components using wave mixing methods[J]. Journal of Testing and Evaluation, 2019, 47(5): 3622-3633.
    [16] LV H T, ZHANG J, JIAO J P, et al. Fatigue crack inspection and characterisation using non-collinear shear wave mixing[J]. Smart Materials and Structures, 2020, 29(5): 055024. doi: 10.1088/1361-665X/ab5486
    [17] YUAN B, SHUI G S, WANG Y S. Evaluating and locating plasticity damage using collinear mixing waves[J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4575-4585. doi: 10.1007/s11665-020-04971-y
    [18] JU T, ACHENBACH J D, JACOBS L J, et al. Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique[J]. NDT & E International, 2019, 103: 62-67.
    [19] ZHANG Y H, LI X X, WU Z Y, et al. Fatigue life prediction of metallic materials based on the combined nonlinear ultrasonic parameter[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3648-3656. doi: 10.1007/s11665-017-2811-7
    [20] SAMPATH S, JANG J, SOHN H. Ultrasonic Lamb wave mixing based fatigue crack detection using a deep learning model and higher-order spectral analysis[J]. International Journal of Fatigue, 2022, 163: 107028. doi: 10.1016/j.ijfatigue.2022.107028
    [21] JIAO J P, LV H T, HE C F, et al. Fatigue crack evaluation using the non-collinear wave mixing technique[J]. Smart Materials and Structures, 2017, 26(6): 065005. doi: 10.1088/1361-665X/aa6c43
  • 加载中
图(11)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  33
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-10-27
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回