高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热管堆耦合开式布雷顿循环系统运行特性研究

刘玖松 刘承敏 易经纬 李毅 李思广

刘玖松, 刘承敏, 易经纬, 李毅, 李思广. 热管堆耦合开式布雷顿循环系统运行特性研究[J]. 核动力工程, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237
引用本文: 刘玖松, 刘承敏, 易经纬, 李毅, 李思广. 热管堆耦合开式布雷顿循环系统运行特性研究[J]. 核动力工程, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237
Liu Jiusong, Liu Chengmin, Yi Jingwei, Li Yi, Li Siguang. Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle[J]. Nuclear Power Engineering, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237
Citation: Liu Jiusong, Liu Chengmin, Yi Jingwei, Li Yi, Li Siguang. Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle[J]. Nuclear Power Engineering, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237

热管堆耦合开式布雷顿循环系统运行特性研究

doi: 10.13832/j.jnpe.2024.01.0237
基金项目: 四川省科技计划项目(2022JDRC0026)
详细信息
    作者简介:

    刘玖松(1998—),男,硕士研究生,现从事反应堆系统与设备研究,E-mail: liujs_9816@163.com

  • 中图分类号: TL413.1

Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle

  • 摘要: 为探究热管堆与开式布雷顿循环耦合的核电转换系统在堆芯功率和负荷变化时的运行特性,基于Modelica语言建立系统仿真模型,包括堆芯模型、热管传热模型和布雷顿循环模型,并验证了各模型的准确性。采用建立的模型对甩负荷工况和升、降功率过程进行了瞬态仿真和计算。计算结果表明,在瞬态过程中,负荷或堆芯功率的变化将导致转速的改变,需通过旁通调节阀控制涡轮流量使转速恢复稳定。在甩负荷工况中,甩负荷导致堆芯温度下降,反应性反馈将导致堆芯功率升高2.3%、燃料最高温度升高1.7 K。在升、降功率过程中,反应性反馈导致的归一化堆芯功率峰值分别为102.6%和100.7%。本文研究结果可为热管堆与开式布雷顿循环耦合带来的安全风险及其安全分析提供参考。

     

  • 图  1  热管堆-开式布雷顿循环核电转换系统示意图

    Figure  1.  Nuclear Power Conversion System of Heat Pipe Reactor Coupled with Open-air Brayton Cycle

    图  2  堆芯单元二维传热模型

    Figure  2.  2D Heat Transfer Model for Core Unit

    图  3  热管传热模型

    R—热阻;Q—热流;下标eva—蒸发;con—冷凝;p—热管壁;w—吸液芯;v—蒸气区域;e—蒸发段;a—绝热段;c—冷凝段

    Figure  3.  Heat Pipe Heat Transfer Model

    图  4  换热器内热管与翅片示意图

    Figure  4.  Structure of Heat Pipe and Fin in Heat Exchanger

    图  5  调节阀控制模块

    Figure  5.  Control Module of Regulating Valve

    图  6  热管堆-开式布雷顿循环核电转换系统仿真模型

    Figure  6.  Simulation Model for Nuclear Power Conversion System of Heat Pipe Reactor Coupled with Open-air Brayton Cycle

    图  7  单元二维传热模型计算的温度分布

    Figure  7.  Temperature Distribution Calculated by 2-D Unit Model

    图  8  3种模型热管传热瞬态计算结果对比

    Figure  8.  Comparison of Results among Three Heat Pipe Models       

    图  9  不同转速下特性拟合曲线

    Figure  9.  Characteristic Fitting Curves at Different Rotating Speeds

    图  10  甩负荷工况布雷顿循环系统流量和转速曲线

    Figure  10.  Mass Flow and Rotating Speed Curves of Brayton Cycle System during LOL

    图  11  甩负荷工况反应性、堆芯功率和换热器热流量曲线     

    1pcm=10−5

    Figure  11.  Curves of Reactivity, Reactor Power and Heat Flows in Heat Exchanger during LOL

    图  12  甩负荷工况换热器内部热管、翅片、空气温度曲线

    Figure  12.  Curves of Temperatures of Heat Pipe, Fin and Air in Heat Exchanger during LOL

    图  13  甩负荷工况燃料、基体温度曲线

    Figure  13.  Curves of Temperatures of Fuel and Monolith during LOL     

    图  14  降功率过程布雷顿系统流量与转速曲线

    Figure  14.  Curves of Mass Flows and Rotating Speed during Reactor Power Reduction

    图  15  降功率过程堆芯、涡轮、压气机、负荷功率曲线

    Figure  15.  Curves of Power of Reactor, Turbine, Compressor and Load during Reactor Power Reduction

    图  16  升功率过程布雷顿系统流量与转速曲线

    Figure  16.  Curves of Mass Flows and the Rotating Speed during Reactor Power Increment

    图  17  升功率过程堆芯、涡轮、压气机、负荷功率曲线

    Figure  17.  Curves of Power of Reactor, Turbine, Compressor and Load during Reactor Power Increment

    表  1  单元二维传热模型与堆芯三维模型计算结果对比

    Table  1.   Comparison of Results between 2-D Unit Model and 3-D Core Model

    参数 单元二维
    传热模型
    堆芯三维
    模型[13]
    误差/K
    燃料最高温度/K 1029.5 1025.6 +3.9
    基体最高温度/K 970.7 969.4 +1.3
    下载: 导出CSV

    表  2  零负荷不同转速和堆芯功率下换热器出口温度和流量计算结果

    Table  2.   Heat Exchanger Outlet Temperatures and Mass Flows in the Conditions of Zero Load, Different Rotating Speeds and Different Reactor Power

    转速/% 功率/% 换热器出口温度/℃ 温度误差/% 总流量/(kg·s−1) 流量误差/%
    计算值 设计值 计算值 设计值
    70 62.2 503.3 520.0 −3.2 2.06 1.99 3.9
    80 70.5 497.5 520.0 −4.3 2.62 2.47 6.1
    80 70.6 498.2 520.0 −4.2 2.62 2.48 5.8
    90 78.5 499.8 520.0 −3.9 3.25 3.12 4.2
    98 77.5 508.9 520.0 −2.1 3.57 3.52 1.5
    100 80.2 523.6 530.0 −1.2 3.63 3.60 0.9
    100 101.2 588.8 610.0 −3.5 3.64 3.51 3.9
    100 105.8 603.3 610.0 −1.1 3.65 3.61 1.1
    100 106.6 605.6 610.0 −0.7 3.65 3.62 0.8
    表中的转速、功率为相对于额定数值的百分比,下同
    下载: 导出CSV

    表  3  降功率和升功率过程控制流程

    Table  3.   Procedures of Reactor Power Reduction and Increment

    时间/h 降功率过程 升功率过程
    负荷/% 外部反应性/pcm 转速/% 负荷/% 外部反应性/pcm 转速/%
    0 100 1171.1 100 0 609.0 70
    4 75 1171.1 100 0 658.7 70
    6 75 1097.9 100 5 658.7 70
    8 55 1097.9 100 5 731.9 70
    10 55 1024.7 92 10 731.9 70
    12 40 1024.7 92 10 805.1 80
    14 40 951.5 92 15 805.1 80
    16 25 951.5 92 15 878.3 80
    18 25 878.3 80 25 878.3 80
    20 15 878.3 80 25 951.5 92
    22 15 805.1 80 40 951.5 92
    24 10 805.1 80 40 1024.7 92
    26 10 731.9 70 55 1024.7 92
    28 5 731.9 70 55 1097.9 100
    30 5 658.7 70 75 1097.9 100
    32 0 658.7 70 75 1171.1 100
    34 0 609.0 70 100 1171.1 100
    下载: 导出CSV
  • [1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [2] MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos, NM (United States): Los Alamos National Lab. , 2015.
    [3] SWARTZ M M, BYERS W A, LOJEK J, et al. Westinghouse eVinciTM heat pipe micro reactor technology development[C]//Proceedings of the 28th International Conference on Nuclear Engineering. USA: American Society of Mechanical Engineers, 2021: V001T004A018.
    [4] LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412
    [5] MA Y G, TIAN C Q, YU H X, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904. doi: 10.1016/j.pnucene.2021.103904
    [6] 郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核—热—力”耦合方法研究[J]. 中国基础科学,2021, 23(3): 51-58. doi: 10.3969/j.issn.1009-2412.2021.03.008
    [7] 马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [8] WRIGHT S A. Preliminary results of a dynamic systems model for a closed-loop Brayton cycle system coupled to a nuclear reactor[C]//Proceedings of the 1st International Energy Conversion Engineering Conference. Portsmouth, Virginia: American Institute of Aeronautics and Astronautics, 2003: 6008.
    [9] MOISSEYTSEV A, SIENICKI J J. Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor[J]. Nuclear Engineering and Design, 2008, 238(8): 2094-2105. doi: 10.1016/j.nucengdes.2007.11.012
    [10] EL-GENK M S, TOURNIER J M P, GALLO B M. Dynamic simulation of a space reactor system with closed Brayton cycle loops[J]. Journal of Propulsion and Power, 2010, 26(3): 394-406. doi: 10.2514/1.46262
    [11] 侯捷名. 100kWe级锂冷空间快堆耦合布雷顿循环系统运行特性研究[D]. 上海: 上海交通大学,2020.
    [12] 明杨,易经纬,方华伟,等. 直接布雷顿循环气冷反应堆系统运行特性分析[J]. 原子能科学技术,2020, 54(7): 1168-1175. doi: 10.7538/yzk.2020.youxian.0013
    [13] STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls, ID, United States: Idaho National Lab. , 2017.
    [14] MA Y G, ZHONG R C, YU H X, et al. Startup analyses of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2022, 153: 104405. doi: 10.1016/j.pnucene.2022.104405
    [15] MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal- mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
    [16] ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
    [17] FERRANDI C, IORIZZO F, MAMELI M, et al. Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied Thermal Engineering, 2013, 50(1): 1280-1290. doi: 10.1016/j.applthermaleng.2012.07.022
    [18] KOLLIYIL J J, YARRAMSETTY N, BALAJI C. Numerical modeling of a wicked heat pipe using lumped parameter network incorporating the marangoni effect[J]. Heat Transfer Engineering, 2021, 42(9): 787-801. doi: 10.1080/01457632.2020.1735799
    [19] LEMMON E W, JACOBSEN R T, PENONCELLO S G, et al. Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa[J]. Journal of Physical and Chemical Reference Data, 2000, 29(3): 331-385. doi: 10.1063/1.1285884
    [20] ZAVALA-RÍO A, FEMAT R, SANTIESTEBAN-COS R. An analytical study of the logarithmic mean temperature difference[J]. Revista Mexicana de Ingeniería Química, 2005, 4(3): 201-212.
    [21] 孙中宁,范广铭,王建军. 反应堆热工水力学[M]. 哈尔滨: 哈尔滨工程大学出版社,2017: 75-79.
    [22] CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, Part A: Applications, 1991, 18(4): 483-502.
    [23] 刘喜超,唐胜利. 基于偏最小二乘法的压气机特性曲线的拟和[J]. 汽轮机技术,2006, 48(5): 327-329. doi: 10.3969/j.issn.1001-5884.2006.05.002
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  27
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-11-01
  • 刊出日期:  2024-02-15

目录

    /

    返回文章
    返回