高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆核电厂一回路冷却剂系统中锕系核素质量评估方法研究

熊军 吕炜枫 郭润春 高耀毅 蒋振宇

熊军, 吕炜枫, 郭润春, 高耀毅, 蒋振宇. 压水堆核电厂一回路冷却剂系统中锕系核素质量评估方法研究[J]. 核动力工程, 2024, 45(2): 47-52. doi: 10.13832/j.jnpe.2024.02.0047
引用本文: 熊军, 吕炜枫, 郭润春, 高耀毅, 蒋振宇. 压水堆核电厂一回路冷却剂系统中锕系核素质量评估方法研究[J]. 核动力工程, 2024, 45(2): 47-52. doi: 10.13832/j.jnpe.2024.02.0047
Xiong Jun, Lyu Weifeng, Guo Runchun, Gao Yaoyi, Jiang Zhenyu. Research on Evaluation Method of Actinide Nuclide Activities in Primary Coolant System of Pressurized Water Reactor Nuclear Power Plant[J]. Nuclear Power Engineering, 2024, 45(2): 47-52. doi: 10.13832/j.jnpe.2024.02.0047
Citation: Xiong Jun, Lyu Weifeng, Guo Runchun, Gao Yaoyi, Jiang Zhenyu. Research on Evaluation Method of Actinide Nuclide Activities in Primary Coolant System of Pressurized Water Reactor Nuclear Power Plant[J]. Nuclear Power Engineering, 2024, 45(2): 47-52. doi: 10.13832/j.jnpe.2024.02.0047

压水堆核电厂一回路冷却剂系统中锕系核素质量评估方法研究

doi: 10.13832/j.jnpe.2024.02.0047
详细信息
    作者简介:

    熊 军(1984—),男,高级工程师,硕士研究生,现主要从事核电厂辐射防护设计工作,E-mail: junxiong314@126.com

    通讯作者:

    吕炜枫,E-mail: liweifeng1000@163.com

  • 中图分类号: TL929

Research on Evaluation Method of Actinide Nuclide Activities in Primary Coolant System of Pressurized Water Reactor Nuclear Power Plant

  • 摘要: 为评估压水堆核电厂燃料包壳破损时的工作人员辐射风险和燃料包壳破损程度,基于特征物理量建立一回路冷却剂系统中锕系核素质量评估方法。本文基于锕系核素的生成和迁移机理,建立了一回路冷却剂系统中锕系核素的平衡方程组,并选取3种易监测的特征物理量用以评估锕系核素向一回路冷却剂系统的释放量及其分布,并建立了一回路冷却剂系统中锕系核素质量的评估方法。然后分别采用国内在役压水堆核电厂无燃料包壳破损和有燃料包壳破损的实测数据对建立的评估方法进行了验证,验证结果表明:建立的评估方法可在无燃料包壳破损和有燃料包壳破损的情况下对一回路冷却剂系统中锕系核素质量进行评估,评估结果和预期符合。本文研究成果可为压水堆核电厂运行期间一回路冷却剂系统中锕系核素质量及其分布评估提供指导,从而优化后端的工作人员防护措施,降低辐射风险。

     

  • 表  1  国内典型二代压水堆核电厂设计参数

    Table  1.   Design Parameters of a Typical Second Generation PWR Plant in China

    物理量 参数值 物理量 参数值
    堆芯铀装量/t 72.46 堆芯热功率/MW 2895
    燃料棒数量/根 41448 循环长度/d 320
    线功率密度/( W·cm−1) 186.0 堆内壁面锕系核素沉积速率/s−1 4.0×10−4
    一回路冷却剂总质量/t 169.4 堆内壁面沉积的锕系核素腐蚀释放速率/s−1 3.0×10−9
    下泄净化流量/(t·h−1) 13.6 堆外壁面锕系核素沉积速率/s−1 4.0×10−4
    下泄净化效率 0.9 堆外壁面沉积的锕系核素腐蚀释放速率/s−1 5.0×10−9
    受中子辐照的冷却剂质量占冷却剂总质量的比例 0.3573
    下载: 导出CSV

    表  2  国内典型二代压水堆不同燃料富集度时冷却剂中134I活度浓度       

    Table  2.   Specific Activity of 134I in Primary Coolant for a Typical Second Generation PWR Plant in China with Different Fuel Enrichment

    锕系核
    素来源
    锕系核素
    初始质量/g
    初始富
    集度/%
    134I活度浓度/
    (102 MBq·t−1)
    沾污铀 1 3.20 4.31
    沾污铀 1 3.80 4.06
    沾污铀 1 4.45 3.76
    侵蚀铀 1 3.20 2.23
    侵蚀铀 1 3.80 2.12
    侵蚀铀 1 4.45 1.99
    下载: 导出CSV

    表  3  冷却剂系统各节点中锕系核素分布(1 g沾污铀)

    Table  3.   Distribution of Actinide Nuclides in Primary Coolant System (1 g Contaminated Uranium)

    核素 堆内壁面沉积
    质量/g
    堆外壁面沉积
    质量/g
    冷却剂中
    质量/g
    238U 8.91×10−1 3.62×10−2 3.47×10−6
    235U 1.92×10−2 9.85×10−4 7.62×10−8
    239Pu 1.90×10−2 4.62×10−4 7.22×10−8
    241Pu 2.04×10−3 2.49×10−5 7.60×10−9
    242Amm 2.30×10−7 1.96×10−9 8.50×10−13
    238Pu 1.22×10−5 1.39×10−7 4.52×10−11
    240Pu 3.27×10−3 5.50×10−5 1.22×10−8
    241Am 2.10×10−5 4.39×10−7 7.95×10−11
    242Cm 3.15×10−6 1.99×10−8 1.16×10−11
    244Cm 1.13×10−6 6.75×10−9 4.17×10−12
    234U 2.10×10−8 3.79×10−10 7.90×10−14
    236U 2.08×10−3 4.46×10−5 7.87×10−9
    237U 6.12×10−6 7.33×10−9 2.24×10−11
    237Np 1.02×10−4 1.69×10−6 3.84×10−10
    238Np 3.33×10−7 1.25×10−10 1.21×10−12
    239Np 4.23×10−4 1.80×10−7 1.54×10−9
    242Pu 2.09×10−4 1.91×10−6 7.76×10−10
    243Am 1.26×10−5 9.14×10−8 4.65×10−11
    243Cm 2.27×10−8 1.44×10−10 8.35×10−14
    总α 9.35×10−1 3.78×10−2 3.64×10−6
    下载: 导出CSV

    表  4  冷却剂系统各节点中锕系核素分布(1 g侵蚀铀)

    Table  4.   Distribution of Actinide Nuclides in Primary Coolant System (1 g Erosion Uranium)

    核素 堆内壁面沉积质量/g 堆外壁面沉积质量/g 冷却剂中质量/g
    238U 4.64×10−1 4.62×10−1 4.67×10−5
    235U 9.94×10−3 1.23×10−2 1.01×10−6
    239Pu 6.87×10−3 1.25×10−3 2.05×10−7
    241Pu 4.83×10−4 6.36×10−5 1.84×10−8
    242Amm 4.62×10−8 7.22×10−9 2.90×10−12
    238Pu 6.21×10−6 2.02×10−6 6.32×10−10
    240Pu 9.47×10−4 1.69×10−4 3.90×10−8
    241Am 4.36×10−6 1.20×10−6 2.09×10−10
    242Cm 6.14×10−7 6.70×10−8 3.62×10−11
    244Cm 2.14×10−7 2.50×10−8 1.41×10−11
    234U 1.44×10−7 1.45×10−7 2.60×10−11
    236U 1.07×10−3 5.77×10−4 1.02×10−7
    237U 3.14×10−6 8.28×10−8 2.51×10−10
    237Np 5.16×10−5 2.09×10−5 4.63×10−9
    238Np 1.67×10−7 1.62×10−9 1.54×10−11
    239Np 2.18×10−4 5.05×10−7 4.32×10−9
    242Pu 4.31×10−5 5.76×10−6 2.17×10−9
    243Am 2.46×10−6 3.34×10−7 1.57×10−10
    243Cm 4.34×10−9 6.10×10−10 3.23×10−13
    总α 4.83×10−1 4.76×10−1 4.81×10−5
    下载: 导出CSV

    表  5  国内某在役压水堆核电厂无燃料包壳破损时一回路冷却剂核素活度浓度

    Table  5.   Specific Activity of Nuclides in Primary Coolant for an In-service PWR Plant in China without Fuel Cladding Damage

    核素 活度浓度/(MBq·t−1) 核素 活度浓度/(MBq·t−1)
    131I 0.72 85Krm 2.40
    132I 12.25 85Kr
    133I 8.10 87Kr 8.04
    134I 25.11 88Kr 6.23
    135I 13.69 133Xem
    134Cs 133Xe 16.91
    136Cs 135Xe 22.20
    137Cs 138Xe 25.13
    138Cs 41.51 239Np
    总α
    下载: 导出CSV

    表  6  国内某在役压水堆核电厂有燃料包壳破损时一回路冷却剂核素活度浓度

    Table  6.   Specific Activity of Nuclides in Primary Coolant for an In-service PWR Plant in China with Fuel Cladding Damage

    核素 活度浓度/(MBq·t−1) 核素 活度浓度/(MBq·t−1)
    131I 104 85Krm 628
    132I 232 85Kr
    133I 270 87Kr 510
    134I 323 88Kr 934
    135I 257 133Xem 575
    134Cs 133Xe 27900
    136Cs 135Xe 3080
    137Cs 119 138Xe 11500
    138Cs 885 239Np
    总α
    下载: 导出CSV
  • [1] LEUTHROT C, BRISSAUD A, HARRER A. Correlation between fission product activity in PWR primary water and characteristics of defects in fuel cladding: IAEA-TECDOC-709[R]. Vienna: IAEA, 1993: 67-71.
    [2] TIGERAS MENENDEZ M A. Fuel failure detection, characterization and modelling: effect on radionuclide behaviour in PWR primary coolant[D]. Paris: Polytechnic University of Madrid and Paris XI University, 2009.
    [3] BENFARAH M, ZOUITER M, JOBERT T, et al. PWR circuit contamination assessment tool. Use of OSCAR code for engineering studies at EDF[J]. EPJ Nuclear Sciences & Technologies, 2016, 2: 15.
    [4] GENIN J B, JOBERT T, ENGLER N. The OSCAR-FP V1.4 code simulation of fission product and alpha emitter contamination in PWR circuits[C]//The 21st International Conference on Water Chemistry in Nuclear Reactor Systems (NPC 2018). San Francisco: HAL, 2019.
    [5] LEWIS B J, EL-JABY A, HIGGS J, et al. A model for predicting coolant activity behaviour for fuel-failure monitoring analysis[J]. Journal of Nuclear Materials, 2007, 366(1-2): 37-51. doi: 10.1016/j.jnucmat.2006.11.015
    [6] EL-JABY A. A model for predicting coolant activity behaviour for fuel-failure monitoring analysis[D]. Ottawa: Royal Military College of Canada, 2009.
    [7] SHAHEEN K, QUASTEL A D, BELL J S, et al. Modelling CANDU fuel element and bundle behaviour for in and out reactor performance of intact and defective fuel[C]. Niagara Falls, Ontario: The 11th International Conference on CANDU Fuel, 2010.
    [8] LIVINGSTONE S J. Development of an on-line fuel failure monitoring system for CANDU reactors[D]. Ottawa: Royal Military College of Canada, 2012.
    [9] LEWIS B J, CHAN P K, EL-JABY A, et al. Fission product release modelling for application of fuel-failure monitoring and detection-an overview[J]. Journal of Nuclear Materials, 2017, 489: 64-83. doi: 10.1016/j.jnucmat.2017.03.037
    [10] EVDOKIMOV I A, KHROMOV A G, KALINICHEV P M, et al. Detection of fuel washout from leaking fuel rods during operation of WWER power units[J]. Journal of Nuclear Materials, 2020, 538: 152205. doi: 10.1016/j.jnucmat.2020.152205
  • 加载中
表(6)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  14
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-06-26
  • 刊出日期:  2024-04-12

目录

    /

    返回文章
    返回