高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纯蒸汽在竖直管内非完全冷凝换热特性的实验研究

刘佳宝 曹夏昕 杨培勋

刘佳宝, 曹夏昕, 杨培勋. 纯蒸汽在竖直管内非完全冷凝换热特性的实验研究[J]. 核动力工程, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072
引用本文: 刘佳宝, 曹夏昕, 杨培勋. 纯蒸汽在竖直管内非完全冷凝换热特性的实验研究[J]. 核动力工程, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072
Liu Jiabao, Cao Xiaxin, Yang Peixun. Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube[J]. Nuclear Power Engineering, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072
Citation: Liu Jiabao, Cao Xiaxin, Yang Peixun. Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube[J]. Nuclear Power Engineering, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072

纯蒸汽在竖直管内非完全冷凝换热特性的实验研究

doi: 10.13832/j.jnpe.2024.02.0072
基金项目: 国家自然科学基金(11975085)
详细信息
    作者简介:

    刘佳宝(1997—),男,博士研究生,现主要从事反应堆热工水力方面的研究,E-mail: jbliuchina@hrbeu.edu.cn

    通讯作者:

    曹夏昕,E-mail: caoxiaxin@hrbeu.edu.cn

  • 中图分类号: TL332

Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube

  • 摘要: 为研究纯蒸汽在竖直管内非完全冷凝的换热特性,使用内径为25 mm的换热管进行实验,入口压力为0.1~0.3 MPa,蒸汽质量流速为12~70 kg/(m2·s)。研究了入口压力、质量流速和质量含气率对管内平均和局部冷凝换热系数的影响,判别了冷凝过程中液膜流态,分析了液膜湍流度和液滴夹带对竖直管内冷凝换热的影响。结果表明:冷凝换热系数随着质量流速和质量含气率的增大而增大,竖直管的冷凝换热系数随着入口压力的升高而降低。实验中的液膜流型主要在过渡流区间,液滴夹带的发生使局部冷凝换热系数提高。对比4种环状流冷凝换热关系式计算结果发现,Shah的经验关系式基本偏差在±30%以内,平均绝对偏差(MAD)为18.91%。基于实验数据提出的经验关系式,其计算值和实验值基本偏差在±10%以内。

     

  • 图  1  实验系统流程图

    Figure  1.  Flow Scheme of Experimental System

    图  2  实验段模型结构示意图

    Figure  2.  Schematic Diagram of Experimental Section Model Structure

    图  3  实验段温度测点布置示意图

    Figure  3.  Arrangement of Temperature Measuring Points in Experimental Section

    图  4  冷却水吸热量和水蒸气放热量结果的比较

    Figure  4.  Comparison of the Results of Cooling Water Heat Absorption and Steam Heat Release

    图  5  平均冷凝换热系数随入口压力和入口蒸汽雷诺数变化曲线

    Figure  5.  Variation Curve of Average Condensation Heat Transfer Coefficient with Inlet Pressure and Inlet Steam Reg

    图  6  平均冷凝换热系数随平均质量含气率变化

    Figure  6.  Variation of Average Condensation Heat Transfer Coefficient with Average Mass Quality

    图  7  管内冷凝流型示意图

    Rel—液相雷诺数

    Figure  7.  Schematic Diagram of Condensation Flow Pattern in Tube     

    图  8  使用Ciocolini准则判断液膜流动状态

    Figure  8.  Determination of Liquid Film Flow Pattern Zones by Ciocolini's Criterion

    图  9  局部冷凝换热系数随入口压力变化曲线

    Figure  9.  Variation Curve of Local Condensation Heat Transfer Coefficient with Inlet Pressure

    图  10  不同质量流速下局部冷凝换热系数的沿程变化

    Figure  10.  Variation of Local Condensation Heat Transfer Coefficient along the Tube at Different Mass Fluxes

    图  11  局部冷凝换热系数实验值与Nusselt模型计算值比较

    Figure  11.  Comparison between the Experimental Value of Local Condensation Heat Transfer Coefficient and the Calculated Value of Nusselt Model

    图  12  局部冷凝换热系数与韦伯数的关系

    Figure  12.  Variation of Local Condensation Heat Transfer Coefficient Versus We

    图  13  局部冷凝换热系数实验值与经验公式关系式计算值的对比

    Figure  13.  Comparison of Experimental Results of Local Condensation Heat Transfer Coefficient with the Results Calculated by Empirical Correlation

    图  14  本文经验关系式计算值与实验值对比

    Figure  14.  Comparison between the Calculated Results of the Proposed Empirical Correlation and the Experimental Values

    表  1  测量仪表的型号与范围精度

    Table  1.   Type and Accuracy Range of Measuring Instruments

    仪表型号测量范围/精度
    涡轮流量计LWGY-151~4 m3/h, 0.5%
    涡街流量计EH-Prowirl F 2002.9~310 m3/h, 0.75%
    压力传感器Keller0~10×105 Pa, 0.5%
    K型热电偶校正后热电偶0~140℃, ±0.2℃
    T型热电偶校正后热电偶0~40℃, ±0.2℃
    下载: 导出CSV

    表  2  实验参数不确定度

    Table  2.   Uncertainties of Experimental Parameters

    实验参数不确定度/%
    Ts/℃±0.2
    G/(kg·m−2·s−1)±0.65
    Pin/105 Pa±1.5
    Tc/℃±0.5
    Mc/(kg·s−1)±0.5
    h/(W·m−2·K−1)2.02~10.56
    下载: 导出CSV
  • [1] LEE K Y, KIM M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(21-22): 5333-5343. doi: 10.1016/j.ijheatmasstransfer.2008.03.017
    [2] RASSAME S, HIBIKI T, ISHII M. ESBWR passive safety system performance under loss of coolant accidents[J]. Progress in Nuclear Energy, 2017, 96: 1-17. doi: 10.1016/j.pnucene.2016.12.005
    [3] SIDDIQUE M, GOLAY M W, KAZIMI M S. Theoretical modeling of forced convection condensation of steam in a vertical tube in the presence of a noncondensable gas[J]. Nuclear Technology, 1994, 106(2): 202-215. doi: 10.13182/NT94-A34976
    [4] KIM D E, YANG K H, HWANG K W, et al. Pure steam condensation model with laminar film in a vertical tube[J]. International Journal of Multiphase Flow, 2011, 37(8): 941-946. doi: 10.1016/j.ijmultiphaseflow.2011.04.006
    [5] WANG J S, LI Y, YAN J J, et al. Condensation heat transfer of steam on vertical micro-tubes[J]. Applied Thermal Engineering, 2015, 88: 185-191. doi: 10.1016/j.applthermaleng.2014.08.058
    [6] DALKILIC A S, YILDIZ S, WONGWISES S. Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 142-150. doi: 10.1016/j.ijheatmasstransfer.2008.05.035
    [7] DALKILIC A S, KUNDU B, WONGWISES S. An experimental investigation of the reynolds analogy and its modifications applied to annular condensation laminar flow of R134a in a vertical tube[J]. Arabian Journal for Science and Engineering, 2013, 38(6): 1493-1507. doi: 10.1007/s13369-013-0595-0
    [8] KUHN S Z. Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube[D]. Berkeley: University of California, 1995.
    [9] OH S, REVANKAR S T. Effect of noncondensable gas in a vertical tube condenser[J]. Nuclear Engineering and Design, 2005, 235(16): 1699-1712. doi: 10.1016/j.nucengdes.2005.01.010
    [10] LEE K Y, KIM M H. Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube[J]. Nuclear Engineering and Design, 2008, 238(1): 207-216. doi: 10.1016/j.nucengdes.2007.07.001
    [11] AL-SHAMMARI S B, WEBB D R, HEGGS P. Condensation of steam with and without the presence of non-condensable gases in a vertical tube[J]. Desalination, 2004, 169(2): 151-160. doi: 10.1016/j.desal.2003.11.006
    [12] DORSCH R G, GOODYKOONTZ J H. Local heat-transfer coefficients and static pressures for condensation of high-velocity steam within a tube[R]. Washington: NASA, 1967.
    [13] KIM S J, NO H C. Turbulent film condensation of high pressure steam in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2000, 43(21): 4031-4042. doi: 10.1016/S0017-9310(00)00015-6
    [14] REVANKAR S T, OH S. Complete condensation in a vertical tube passive condenser[J]. Transactions of the American Nuclear Society, 2004, 91: 883-884.
    [15] NUßELT W. Die oberflächenkondensation des wasserdampfes[J]. VDI-Zeitschriften, 1916, 60: 541-569.
    [16] 杨培勋,曹夏昕,刘佳宝,等. 低质量流速下倾斜管内纯蒸汽冷凝换热特性研究[J]. 哈尔滨工程大学学报,2022, 43(7): 986-992.
    [17] LIU J, CAO X, YANG P. Experimental verification and improvement of heat transfer tube local wall temperature measurement method[J]. Nuclear Engineering and Technology, 2023, 55(12): 4317-4328.
    [18] CHEN S L, GERNER F M, TIEN C L. General film condensation correlations[J]. Experimental Heat Transfer, 1987, 1(2): 93-107. doi: 10.1080/08916158708946334
    [19] AZZOLIN M, BORTOLIN S, DEL COL D. Convective condensation at low mass flux: Effect of turbulence and tube orientation on the heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118646. doi: 10.1016/j.ijheatmasstransfer.2019.118646
    [20] CIONCOLINI A, DEL COL D, THOME J R. An indirect criterion for the laminar to turbulent flow transition in shear-driven annular liquid films[J]. International Journal of Multiphase Flow, 2015, 75: 26-38. doi: 10.1016/j.ijmultiphaseflow.2015.05.002
    [21] CIONCOLINI A, THOME J R. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow[J]. Nuclear Engineering and Design, 2012, 243: 200-213. doi: 10.1016/j.nucengdes.2011.11.014
    [22] GOGONIN I I. Heat transfer in condensation of vapor moving inside vertical tubes[J]. Journal of Engineering Physics and Thermophysics, 2004, 77(2): 454-470. doi: 10.1023/B:JOEP.0000028528.91696.12
    [23] SHAH M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC& R Research, 2009, 15(5): 889-913.
    [24] DOBSON M K, CHATO J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. doi: 10.1115/1.2830043
    [25] CAVALLINI A, DEL COL D, DORETTI L, et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering, 2006, 27(8): 31-38. doi: 10.1080/01457630600793970
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  30
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-07-15
  • 刊出日期:  2024-04-12

目录

    /

    返回文章
    返回