Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube
-
摘要: 为研究纯蒸汽在竖直管内非完全冷凝的换热特性,使用内径为25 mm的换热管进行实验,入口压力为0.1~0.3 MPa,蒸汽质量流速为12~70 kg/(m2·s)。研究了入口压力、质量流速和质量含气率对管内平均和局部冷凝换热系数的影响,判别了冷凝过程中液膜流态,分析了液膜湍流度和液滴夹带对竖直管内冷凝换热的影响。结果表明:冷凝换热系数随着质量流速和质量含气率的增大而增大,竖直管的冷凝换热系数随着入口压力的升高而降低。实验中的液膜流型主要在过渡流区间,液滴夹带的发生使局部冷凝换热系数提高。对比4种环状流冷凝换热关系式计算结果发现,Shah的经验关系式基本偏差在±30%以内,平均绝对偏差(MAD)为18.91%。基于实验数据提出的经验关系式,其计算值和实验值基本偏差在±10%以内。Abstract: In order to study the heat transfer characteristics of pure steam with incomplete condensation in a vertical tube, an experiment was carried out using a heat exchange tube with an inner diameter of 25 mm, with an inlet pressure of 0.1~0.3 MPa and a steam mass flux of 12~70 kg/(m2·s). The effects of inlet pressure, mass flux and mass quality on the average and local condensation heat transfer coefficients in the tube were investigated. The liquid film flow pattern in the condensation process was identified, and the effects of liquid film turbulence and droplet entrainment on the condensation heat transfer in the tube were analyzed. It is shown that the condensation heat transfer coefficient increases with the increase of mass flux and mass quality. However, the condensation heat transfer coefficient of vertical tube decreases with the increase of inlet pressure. The liquid film flow pattern in the experiment is mainly in the transition flow region, and the occurrence of droplet entrainment increases the local condensation heat transfer coefficient. Four annular flow condensation heat transfer equations are compared. The results show that the basic deviation of Shah's empirical equation is within ±30%, and the mean absolute deviation (MAD) was 18.91%. An empirical correlation based on the experimental data is developed, and the basic deviation between the calculated value and the experimental value is within ±10%.
-
表 1 测量仪表的型号与范围精度
Table 1. Type and Accuracy Range of Measuring Instruments
仪表 型号 测量范围/精度 涡轮流量计 LWGY-15 1~4 m3/h, 0.5% 涡街流量计 EH-Prowirl F 200 2.9~310 m3/h, 0.75% 压力传感器 Keller 0~10×105 Pa, 0.5% K型热电偶 校正后热电偶 0~140℃, ±0.2℃ T型热电偶 校正后热电偶 0~40℃, ±0.2℃ 表 2 实验参数不确定度
Table 2. Uncertainties of Experimental Parameters
实验参数 不确定度/% Ts/℃ ±0.2 G/(kg·m−2·s−1) ±0.65 Pin/105 Pa ±1.5 Tc/℃ ±0.5 Mc/(kg·s−1) ±0.5 h/(W·m−2·K−1) 2.02~10.56 -
[1] LEE K Y, KIM M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(21-22): 5333-5343. doi: 10.1016/j.ijheatmasstransfer.2008.03.017 [2] RASSAME S, HIBIKI T, ISHII M. ESBWR passive safety system performance under loss of coolant accidents[J]. Progress in Nuclear Energy, 2017, 96: 1-17. doi: 10.1016/j.pnucene.2016.12.005 [3] SIDDIQUE M, GOLAY M W, KAZIMI M S. Theoretical modeling of forced convection condensation of steam in a vertical tube in the presence of a noncondensable gas[J]. Nuclear Technology, 1994, 106(2): 202-215. doi: 10.13182/NT94-A34976 [4] KIM D E, YANG K H, HWANG K W, et al. Pure steam condensation model with laminar film in a vertical tube[J]. International Journal of Multiphase Flow, 2011, 37(8): 941-946. doi: 10.1016/j.ijmultiphaseflow.2011.04.006 [5] WANG J S, LI Y, YAN J J, et al. Condensation heat transfer of steam on vertical micro-tubes[J]. Applied Thermal Engineering, 2015, 88: 185-191. doi: 10.1016/j.applthermaleng.2014.08.058 [6] DALKILIC A S, YILDIZ S, WONGWISES S. Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 142-150. doi: 10.1016/j.ijheatmasstransfer.2008.05.035 [7] DALKILIC A S, KUNDU B, WONGWISES S. An experimental investigation of the reynolds analogy and its modifications applied to annular condensation laminar flow of R134a in a vertical tube[J]. Arabian Journal for Science and Engineering, 2013, 38(6): 1493-1507. doi: 10.1007/s13369-013-0595-0 [8] KUHN S Z. Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube[D]. Berkeley: University of California, 1995. [9] OH S, REVANKAR S T. Effect of noncondensable gas in a vertical tube condenser[J]. Nuclear Engineering and Design, 2005, 235(16): 1699-1712. doi: 10.1016/j.nucengdes.2005.01.010 [10] LEE K Y, KIM M H. Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube[J]. Nuclear Engineering and Design, 2008, 238(1): 207-216. doi: 10.1016/j.nucengdes.2007.07.001 [11] AL-SHAMMARI S B, WEBB D R, HEGGS P. Condensation of steam with and without the presence of non-condensable gases in a vertical tube[J]. Desalination, 2004, 169(2): 151-160. doi: 10.1016/j.desal.2003.11.006 [12] DORSCH R G, GOODYKOONTZ J H. Local heat-transfer coefficients and static pressures for condensation of high-velocity steam within a tube[R]. Washington: NASA, 1967. [13] KIM S J, NO H C. Turbulent film condensation of high pressure steam in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2000, 43(21): 4031-4042. doi: 10.1016/S0017-9310(00)00015-6 [14] REVANKAR S T, OH S. Complete condensation in a vertical tube passive condenser[J]. Transactions of the American Nuclear Society, 2004, 91: 883-884. [15] NUßELT W. Die oberflächenkondensation des wasserdampfes[J]. VDI-Zeitschriften, 1916, 60: 541-569. [16] 杨培勋,曹夏昕,刘佳宝,等. 低质量流速下倾斜管内纯蒸汽冷凝换热特性研究[J]. 哈尔滨工程大学学报,2022, 43(7): 986-992. [17] LIU J, CAO X, YANG P. Experimental verification and improvement of heat transfer tube local wall temperature measurement method[J]. Nuclear Engineering and Technology, 2023, 55(12): 4317-4328. [18] CHEN S L, GERNER F M, TIEN C L. General film condensation correlations[J]. Experimental Heat Transfer, 1987, 1(2): 93-107. doi: 10.1080/08916158708946334 [19] AZZOLIN M, BORTOLIN S, DEL COL D. Convective condensation at low mass flux: Effect of turbulence and tube orientation on the heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118646. doi: 10.1016/j.ijheatmasstransfer.2019.118646 [20] CIONCOLINI A, DEL COL D, THOME J R. An indirect criterion for the laminar to turbulent flow transition in shear-driven annular liquid films[J]. International Journal of Multiphase Flow, 2015, 75: 26-38. doi: 10.1016/j.ijmultiphaseflow.2015.05.002 [21] CIONCOLINI A, THOME J R. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow[J]. Nuclear Engineering and Design, 2012, 243: 200-213. doi: 10.1016/j.nucengdes.2011.11.014 [22] GOGONIN I I. Heat transfer in condensation of vapor moving inside vertical tubes[J]. Journal of Engineering Physics and Thermophysics, 2004, 77(2): 454-470. doi: 10.1023/B:JOEP.0000028528.91696.12 [23] SHAH M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC& R Research, 2009, 15(5): 889-913. [24] DOBSON M K, CHATO J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. doi: 10.1115/1.2830043 [25] CAVALLINI A, DEL COL D, DORETTI L, et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering, 2006, 27(8): 31-38. doi: 10.1080/01457630600793970