Experimental Study on Core Flow Instability Caused by Vortex Flow in Reactor Lower Plenum
-
摘要: 压水反应堆各个环路中的冷却剂在下腔室发生剧烈湍流交混,下腔室腔体内产生大量涡流,会导致堆芯燃料组件入口流量随机震荡,引发堆芯瞬态流动不稳定性,可能影响到反应堆热工、结构安全或传热性能。本文对反应堆内燃料组件区域流动特性开展研究,通过水力学试验手段获得反应堆堆芯在多种运行工况下,下腔室安装流量分配裙和不安装流量分配裙时的堆芯燃料组件入口流量脉动数据,试验结果表明,流量分配裙对下腔室涡流的抑制效果明显,在碎涡整流作用下,堆芯流量脉动明显降低;随着运行环路数的减少,下腔室流场对称性降低,涡流增强,堆芯流量脉动明显增大;下腔室涡流还会对堆芯入口流量分配均匀度造成不利影响,流量脉动偏大区域对应的流量分配因子明显较小。Abstract: Strong turbulent mixing of coolant in each loop of the PWR occurs in the lower plenum, and a large number of vertex are generated in the lower plenum, which can lead to random fluctuation of the fuel assembly inlet flow and trigger transient flow instability in the core, thus affecting the reactor thermal safety, structural safety or heat transfer performance. In this paper, the flow characteristics of the fuel assembly area in the reactor are studied, and the flow pulsation data of the fuel assembly inlet with and without flow distribution skirt in the lower plenum are obtained by hydraulic test under various operating conditions. The experimental results show that the lower plenum flow distribution skirt has obvious effect on restraining vortex, and the core flow pulsation is obviously reduced under the action of vortex breaking rectification. With the decrease of the number of operating loops, the symmetry of the flow field in the lower plenum decreases, the vertex flow increases, and the flow pulsation in the core increases obviously. The vortex in the lower chamber will also adversely affect the uniformity of flow distribution at the inlet of the core, and the flow distribution factor corresponding to the area with large flow pulsation is obviously small.
-
Key words:
- Reactor /
- Vertex /
- Flow instability
-
表 1 测量仪器仪表
Table 1. Measuring Instruments
测量参数 所用仪表名称 测量范围 精度/% 数量 环路水温度 温度变送器 0~100℃ 0.5 3 环路水流量 文丘里流量计 300~1400 m3/h 0.5 3 差压变送器 0~100 kPa 0.1 3 模拟燃料组件流量 文丘里流量计 2~20 m3/h 1.0 129 差压变送器 0~100 kPa 0.1 129 表 2 流量脉动试验结果 %
Table 2. Test Results of Flow Fluctuation
试验工况 $ {\beta _i} $最大值 $ {\beta _i} $最小值 $ \overline \beta $ 安装流量分配裙 三泵工况 1.5 0.3 0.8 两泵工况 4.9 0.5 1.3 单泵工况 38.9 1.4 3.9 不安装流量分配裙 三泵工况 6.5 0.7 2.4 两泵工况 16.6 1.2 4.7 单泵工况 39.3 2.1 8.7 -
[1] 黄彦平,马介亮,肖泽军,等. 多管平行通道流动不稳定性类型试验研究[J]. 核科学与工程,2002, 22(4): 289-295. [2] 王艳林,黄彦平,卢冬华. 矩形窄缝通道流动不稳定起始现象实验研究[J]. 核动力工程,2007, 28(2): 28-32,46. [3] 王俊峰,黄彦平,王艳林. 矩形窄缝通道低压低流速流动不稳定起始点实验研究[J]. 原子能科学技术,2016, 50(11): 1998-2002. [4] BOURE J A, BERGLES A E, TONG L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192. doi: 10.1016/0029-5493(73)90043-5 [5] PURAGLIESI R, ZHOU L, ZERKAK O, et al. Steady-state CFD simulations of an EPR™ reactor pressure vessel: a validation study based on the JULIETTE experiments[J]. Nuclear Engineering and Design, 2016, 300: 41-56. doi: 10.1016/j.nucengdes.2015.12.025 [6] MARTINEZ P, GALPIN J. CFD modeling of the EPR primary circuit[J]. Nuclear Engineering and Design, 2014, 278: 529-541. doi: 10.1016/j.nucengdes.2014.08.013 [7] KIM K, EUH D J, CHU I C, et al. Experimental study of the APR+ reactor core flow and pressure distributions under 4-pump running conditions[J]. Nuclear Engineering and Design, 2013, 265: 957-966. doi: 10.1016/j.nucengdes.2013.07.021 [8] LEE G H, BANG Y S, WOO S W, et al. Numerical Analysis of internal flow distribution in scale-down APR+[J]. Transactions of the Korean Society of Mechanical Engineers B, 2013, 37(9): 855-862. doi: 10.3795/KSME-B.2013.37.9.855 [9] LEE G H, BANG Y S, WOO S W, et al. A numerical study for the effect of flow skirt geometry on reactor internal flow[J]. Annals of Nuclear Energy, 2013, 62: 452-462. doi: 10.1016/j.anucene.2013.07.005 [10] TONG L L, HOU L Q, CAO X W. Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel[J]. Nuclear Engineering and Technology, 2021, 53(1): 93-102. doi: 10.1016/j.net.2020.07.002 [11] 丁宗华,张明,林绍萱. CAP1400反应堆堆芯入口流量分配试验研究[J]. 原子能科学技术,2018, 52(9): 1635-1640. [12] 孟洋,廖恒基,王盛,等. 阻力调节机构及其构成的反应堆闭式燃料组件水力学模拟装置: 中国,CN110415843B[P]. 2021-01-26.