高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于钠冷快堆绕丝棒束组件热工水力特性分析的多孔介质模型

王心安 张大林 王婷 秋穗正 苏光辉

王心安, 张大林, 王婷, 秋穗正, 苏光辉. 一种适用于钠冷快堆绕丝棒束组件热工水力特性分析的多孔介质模型[J]. 核动力工程, 2024, 45(2): 147-153. doi: 10.13832/j.jnpe.2024.02.0147
引用本文: 王心安, 张大林, 王婷, 秋穗正, 苏光辉. 一种适用于钠冷快堆绕丝棒束组件热工水力特性分析的多孔介质模型[J]. 核动力工程, 2024, 45(2): 147-153. doi: 10.13832/j.jnpe.2024.02.0147
Wang Xinan, Zhang Dalin, Wang Ting, Qiu Suizheng, Su Guanghui. A Porous Media Model for Thermal-hydraulic Analysis of Wire-wrapped Fuel Assembly in Sodium Cooled Fast Reactor[J]. Nuclear Power Engineering, 2024, 45(2): 147-153. doi: 10.13832/j.jnpe.2024.02.0147
Citation: Wang Xinan, Zhang Dalin, Wang Ting, Qiu Suizheng, Su Guanghui. A Porous Media Model for Thermal-hydraulic Analysis of Wire-wrapped Fuel Assembly in Sodium Cooled Fast Reactor[J]. Nuclear Power Engineering, 2024, 45(2): 147-153. doi: 10.13832/j.jnpe.2024.02.0147

一种适用于钠冷快堆绕丝棒束组件热工水力特性分析的多孔介质模型

doi: 10.13832/j.jnpe.2024.02.0147
详细信息
    作者简介:

    王心安(1992—),男,工程师,博士研究生,现主要从事反应堆热工水力软件研发工作,E-mail: wangxinan1992@163.com

  • 中图分类号: TL334

A Porous Media Model for Thermal-hydraulic Analysis of Wire-wrapped Fuel Assembly in Sodium Cooled Fast Reactor

  • 摘要: 为准确预测钠冷快堆堆芯三维热工水力参数分布同时降低计算资源需求,基于表征体元概念建立了针对绕丝棒束组件的三维多孔介质模型,根据组件几何结构特点将冷却剂与固体壁面间的相互作用力分解为分布式阻力,引入包含湍流搅混传热、流体导热和燃料棒导热的有效传热系数模型刻画组件的径向传热。采用日本东芝公司核能工程实验室37棒液态钠冷却绕丝棒束组件实验进行模拟计算,数值计算结果与实验结果对比发现,基于论文提出的多孔介质模型可以在多种工况下较好地复现实验结果。因此,本研究提出的多孔介质模型可用于钠冷快堆绕丝棒束组件三维热工水力参数分布预测。

     

  • 图  1  表征体元示意

    Ai—表征体元中的固液界面面积;$\overline \varphi $—流场参数时间平均值;$\varphi ' $—流场参数扰动量

    Figure  1.  Sketch for Representative Element Volume

    图  2  Toshiba实验测量截面图

    数据—子通道编号

    Figure  2.  Measuring Point Distribution for Toshiba Experiment     

    图  3  Toshiba实验计算域网格示意图

    Figure  3.  Mesh Model for Toshiba Experiment

    图  4  网格敏感性分析

    Figure  4.  Mesh Sensitivity Analysis

    图  5  Toshiba实验测量截面无量纲温升

    Figure  5.  Dimensionless Temperature Rise of Measuring Section for Toshiba Experiment

    表  1  实验段结构参数

    Table  1.   Geometric Parameters of Test Sections

    参数名 参数值
    棒束数量 37
    燃料棒直径/mm 6.50
    绕丝直径/mm 1.32
    棒束节距比 1.21
    螺距比 47.2
    加热段长度/mm 929.4
    进口非加热段长度/mm 398.78
    下载: 导出CSV

    表  2  实验工况参数

    Table  2.   Operating Parameters of Test Section

    工况编号 Re 平均线功率/
    (kW·m–1)
    功率倾
    斜因子
    进口
    温度/K
    温升/K
    E37P13 880 0.39 1∶1 479.82 114.29
    C37P06 2920 1.19 1∶1 465.37 97.80
    B37P02 12000 1.56 1∶1 484.26 30.00
    F37P27 1700 0.95 1.4∶1 477.59 150.55
    F37P20 3060 1.56 1.4∶1 477.59 135.16
    E37P17 8300 1.56 1.4∶1 482.59 44.44
    L37P43 1500 0.99 2∶1 478.15 189.56
    G37P25 3070 1.59 2∶1 477.04 137.36
    G37P22 8000 1.59 2∶1 478.71 46.11
    下载: 导出CSV

    表  3  Toshiba实验无量纲温升平均偏差

    Table  3.   Average Deviation of Dimensionless Temperature Rise for Toshiba Experiment

    工况编号 COBRA-IV程序 本文模型
    E37P13 0.013 0.021
    C37P06 0.024 0.021
    B37P02 0.048 0.040
    F37P27 0.025 0.025
    F37P20 0.023 0.025
    E37P17 0.072 0.057
    L37P43 0.014 0.035
    G37P25 0.036 0.043
    G37P22 0.111 0.050
    下载: 导出CSV
  • [1] STEWART C W, WHEELER C L, CENA R J, et al. COBRA-IV: the model and the method: BNWL-2214[R]. Richland: Pacific Northwest National Lab., 1977.
    [2] BASEHORE K L, TODREAS N E. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis: PNL-3379[R]. Richland: Battelle Pacific Northwest Labs., 1980.
    [3] KIM W S, KIM Y G, KIM Y J. A subchannel analysis code MATRA-LMR for wire wrapped LMR subassembly[J]. Annals of Nuclear Energy, 2002, 29(3): 303-321. doi: 10.1016/S0306-4549(01)00041-X
    [4] RUST K, TSCHÖKE H, WEINBERG D. Influence of the position and number of decay heat exchangers on the thermal hydraulics of a slab test facility: a comparison of analytical and experimental data[J]. Experimental Thermal and Fluid Science, 1994, 9(4): 413-425. doi: 10.1016/0894-1777(94)90019-1
    [5] 郝老迷. 快堆燃料组件的子通道分析[J]. 原子能科学技术,1993, 27(5): 426-431.
    [6] WU Y W, LI X, YU X L, et al. Subchannel thermal-hydraulic analysis of the fuel assembly for liquid sodium cooled fast reactor[J]. Progress in Nuclear Energy, 2013, 68: 65-78. doi: 10.1016/j.pnucene.2013.05.001
    [7] KHAN E U, ROHSENOW W M, SONIN A A, et al. A porous body model for predicting temperature distribution in wire-wrapped fuel rod assemblies[J]. Nuclear Engineering and Design, 1975, 35(1): 1-12. doi: 10.1016/0029-5493(75)90076-X
    [8] HU R, FANNING T H. A momentum source model for wire-wrapped rod bundles—Concept, validation, and application[J]. Nuclear Engineering and Design, 2013, 262: 371-389. doi: 10.1016/j.nucengdes.2013.04.026
    [9] WANG X A, ZHANG D L, WANG M J, et al. Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor[J]. Nuclear Engineering and Technology, 2020, 52(4): 708-720. doi: 10.1016/j.net.2019.09.009
    [10] RADMAN S, FIORINA C, MIKITYUK K, et al. A coarse-mesh methodology for modelling of single-phase thermal-hydraulics of ESFR innovative assembly design[J]. Nuclear Engineering and Design, 2019, 355: 110291. doi: 10.1016/j.nucengdes.2019.110291
    [11] 陈宇彤,张大林,梁禹,等. 快堆绕丝组件三维精细化多孔介质模型与验证[J]. 核动力工程,2021, 42(S1): 53-57. doi: 10.13832/j.jnpe.2021.S1.0053
    [12] WANG X A, ZHANG D L, WANG M J, et al. Numerical investigation for the heat transfer mechanisms between subchannels of bar rod bundles cooled by liquid sodium[J]. Annals of Nuclear Energy, 2021, 161: 108460. doi: 10.1016/j.anucene.2021.108460
    [13] DE LEMOS, MARCELO J S. Turbulent flow around fluid–porous interfaces computed with a diffusion-jump model for k and ε transport equations[J]. Transport in Porous Media, 2009, 78(3): 331-346. doi: 10.1007/s11242-009-9379-0
    [14] ZOHURI B, FATHI N. Thermal-hydraulic analysis of nuclear reactors[M]. Cham: Springer, 2015: 262.
    [15] CHENG S K, TODREAS N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles — Bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227-251. doi: 10.1016/0029-5493(86)90249-9
    [16] GUNTER A Y, SHAW W A. A general correlation of friction factors for various types of surfaces in crossflow[J]. Transactions of the American Society of Mechanical Engineers, 1945, 67(8): 643-656.
    [17] NINOKATA H, EFTHIMIADIS A, TODREAS N E. Distributed resistance modeling of wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 1987, 104(1): 93-102. doi: 10.1016/0029-5493(87)90306-2
    [18] RO T S. Porous body analysis of vertical rod bundles under mixed convection conditions[D]. Massachusetts: Massachusetts Institute of Technology, 1986.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  66
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-11-09
  • 刊出日期:  2024-04-12

目录

    /

    返回文章
    返回