A Porous Media Model for Thermal-hydraulic Analysis of Wire-wrapped Fuel Assembly in Sodium Cooled Fast Reactor
-
摘要: 为准确预测钠冷快堆堆芯三维热工水力参数分布同时降低计算资源需求,基于表征体元概念建立了针对绕丝棒束组件的三维多孔介质模型,根据组件几何结构特点将冷却剂与固体壁面间的相互作用力分解为分布式阻力,引入包含湍流搅混传热、流体导热和燃料棒导热的有效传热系数模型刻画组件的径向传热。采用日本东芝公司核能工程实验室37棒液态钠冷却绕丝棒束组件实验进行模拟计算,数值计算结果与实验结果对比发现,基于论文提出的多孔介质模型可以在多种工况下较好地复现实验结果。因此,本研究提出的多孔介质模型可用于钠冷快堆绕丝棒束组件三维热工水力参数分布预测。Abstract: In order to accurately predict the distribution of three-dimensional thermal-hydraulic parameters in the core of sodium-cooled fast reactor and reduce the demand for computing resources, a three-dimensional porous medium model for the wire-wrapped fuel assembly was established based on the concept of representative element volume. The interaction between the coolant and the solid surface is decomposed into distributed resistance force according to the geometry characteristics of the assembly. An effective heat transfer coefficient model including turbulent mixing heat transfer, fluid heat transfer and fuel rod heat transfer was introduced to describe the radial heat transfer of the assembly. Numerical analysis was performed for the liquid sodium cooled 37-pin wire wrapped fuel assembly experiment conducted by the Nuclear Energy Engineering Laboratory of Toshiba Corporation. Compared with the experimental results, the numerical calculation results show that the porous medium model proposed in this paper can well reproduce the experimental results under various conditions. Therefore, the porous medium model proposed in this study can be used to predict the distribution of three-dimensional thermal-hydraulic parameters of the wire-wrapped fuel assembly of sodium-cooled fast reactor.
-
表 1 实验段结构参数
Table 1. Geometric Parameters of Test Sections
参数名 参数值 棒束数量 37 燃料棒直径/mm 6.50 绕丝直径/mm 1.32 棒束节距比 1.21 螺距比 47.2 加热段长度/mm 929.4 进口非加热段长度/mm 398.78 表 2 实验工况参数
Table 2. Operating Parameters of Test Section
工况编号 Re 平均线功率/
(kW·m–1)功率倾
斜因子进口
温度/K温升/K E37P13 880 0.39 1∶1 479.82 114.29 C37P06 2920 1.19 1∶1 465.37 97.80 B37P02 12000 1.56 1∶1 484.26 30.00 F37P27 1700 0.95 1.4∶1 477.59 150.55 F37P20 3060 1.56 1.4∶1 477.59 135.16 E37P17 8300 1.56 1.4∶1 482.59 44.44 L37P43 1500 0.99 2∶1 478.15 189.56 G37P25 3070 1.59 2∶1 477.04 137.36 G37P22 8000 1.59 2∶1 478.71 46.11 表 3 Toshiba实验无量纲温升平均偏差
Table 3. Average Deviation of Dimensionless Temperature Rise for Toshiba Experiment
工况编号 COBRA-IV程序 本文模型 E37P13 0.013 0.021 C37P06 0.024 0.021 B37P02 0.048 0.040 F37P27 0.025 0.025 F37P20 0.023 0.025 E37P17 0.072 0.057 L37P43 0.014 0.035 G37P25 0.036 0.043 G37P22 0.111 0.050 -
[1] STEWART C W, WHEELER C L, CENA R J, et al. COBRA-IV: the model and the method: BNWL-2214[R]. Richland: Pacific Northwest National Lab., 1977. [2] BASEHORE K L, TODREAS N E. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis: PNL-3379[R]. Richland: Battelle Pacific Northwest Labs., 1980. [3] KIM W S, KIM Y G, KIM Y J. A subchannel analysis code MATRA-LMR for wire wrapped LMR subassembly[J]. Annals of Nuclear Energy, 2002, 29(3): 303-321. doi: 10.1016/S0306-4549(01)00041-X [4] RUST K, TSCHÖKE H, WEINBERG D. Influence of the position and number of decay heat exchangers on the thermal hydraulics of a slab test facility: a comparison of analytical and experimental data[J]. Experimental Thermal and Fluid Science, 1994, 9(4): 413-425. doi: 10.1016/0894-1777(94)90019-1 [5] 郝老迷. 快堆燃料组件的子通道分析[J]. 原子能科学技术,1993, 27(5): 426-431. [6] WU Y W, LI X, YU X L, et al. Subchannel thermal-hydraulic analysis of the fuel assembly for liquid sodium cooled fast reactor[J]. Progress in Nuclear Energy, 2013, 68: 65-78. doi: 10.1016/j.pnucene.2013.05.001 [7] KHAN E U, ROHSENOW W M, SONIN A A, et al. A porous body model for predicting temperature distribution in wire-wrapped fuel rod assemblies[J]. Nuclear Engineering and Design, 1975, 35(1): 1-12. doi: 10.1016/0029-5493(75)90076-X [8] HU R, FANNING T H. A momentum source model for wire-wrapped rod bundles—Concept, validation, and application[J]. Nuclear Engineering and Design, 2013, 262: 371-389. doi: 10.1016/j.nucengdes.2013.04.026 [9] WANG X A, ZHANG D L, WANG M J, et al. Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor[J]. Nuclear Engineering and Technology, 2020, 52(4): 708-720. doi: 10.1016/j.net.2019.09.009 [10] RADMAN S, FIORINA C, MIKITYUK K, et al. A coarse-mesh methodology for modelling of single-phase thermal-hydraulics of ESFR innovative assembly design[J]. Nuclear Engineering and Design, 2019, 355: 110291. doi: 10.1016/j.nucengdes.2019.110291 [11] 陈宇彤,张大林,梁禹,等. 快堆绕丝组件三维精细化多孔介质模型与验证[J]. 核动力工程,2021, 42(S1): 53-57. doi: 10.13832/j.jnpe.2021.S1.0053 [12] WANG X A, ZHANG D L, WANG M J, et al. Numerical investigation for the heat transfer mechanisms between subchannels of bar rod bundles cooled by liquid sodium[J]. Annals of Nuclear Energy, 2021, 161: 108460. doi: 10.1016/j.anucene.2021.108460 [13] DE LEMOS, MARCELO J S. Turbulent flow around fluid–porous interfaces computed with a diffusion-jump model for k and ε transport equations[J]. Transport in Porous Media, 2009, 78(3): 331-346. doi: 10.1007/s11242-009-9379-0 [14] ZOHURI B, FATHI N. Thermal-hydraulic analysis of nuclear reactors[M]. Cham: Springer, 2015: 262. [15] CHENG S K, TODREAS N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles — Bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227-251. doi: 10.1016/0029-5493(86)90249-9 [16] GUNTER A Y, SHAW W A. A general correlation of friction factors for various types of surfaces in crossflow[J]. Transactions of the American Society of Mechanical Engineers, 1945, 67(8): 643-656. [17] NINOKATA H, EFTHIMIADIS A, TODREAS N E. Distributed resistance modeling of wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 1987, 104(1): 93-102. doi: 10.1016/0029-5493(87)90306-2 [18] RO T S. Porous body analysis of vertical rod bundles under mixed convection conditions[D]. Massachusetts: Massachusetts Institute of Technology, 1986.