高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核燃料溶液系统临界事故分析的辐解气体模型改进

盛慧敏 何俊毅 苟军利 单建强 刘国明

盛慧敏, 何俊毅, 苟军利, 单建强, 刘国明. 核燃料溶液系统临界事故分析的辐解气体模型改进[J]. 核动力工程, 2024, 45(2): 160-165. doi: 10.13832/j.jnpe.2024.02.0160
引用本文: 盛慧敏, 何俊毅, 苟军利, 单建强, 刘国明. 核燃料溶液系统临界事故分析的辐解气体模型改进[J]. 核动力工程, 2024, 45(2): 160-165. doi: 10.13832/j.jnpe.2024.02.0160
Sheng Huimin, He Junyi, Gou Junli, Shan Jianqiang, Liu Guoming. Improvement of Radiolytic Gas Model for Criticality Accident Analysis of Nuclear Fuel Solution System[J]. Nuclear Power Engineering, 2024, 45(2): 160-165. doi: 10.13832/j.jnpe.2024.02.0160
Citation: Sheng Huimin, He Junyi, Gou Junli, Shan Jianqiang, Liu Guoming. Improvement of Radiolytic Gas Model for Criticality Accident Analysis of Nuclear Fuel Solution System[J]. Nuclear Power Engineering, 2024, 45(2): 160-165. doi: 10.13832/j.jnpe.2024.02.0160

核燃料溶液系统临界事故分析的辐解气体模型改进

doi: 10.13832/j.jnpe.2024.02.0160
详细信息
    作者简介:

    盛慧敏(1997—),女,在读博士研究生,现主要从事溶液系统核临界事故安全分析研究,E-mail: Shenghm@stu.xjtu.edu.cn

    通讯作者:

    苟军利, E-mail: junligou@mail.xjtu.edu.cn

  • 中图分类号: TL364.4

Improvement of Radiolytic Gas Model for Criticality Accident Analysis of Nuclear Fuel Solution System

  • 摘要: 对瞬态临界事故的准确模拟是核燃料溶液系统临界安全评估的关键因素。现有的辐解气体模型经验参数较多,导致功率特性预测存在较大偏差。为提高模拟精度和避免对模型中经验参数取值的依赖,需对辐解气体模型进行改进。基于对溶液中辐解气体行为的分析和简化假设,建立了包含辐解气体浓度、辐解气泡单位体积物质量和气泡数量密度的守恒模型,并将其与点堆中子动力学模型和二维导热模型相耦合,开发了溶液系统二维瞬态分析程序,通过日本TRACY实验进行了验证。结果表明,程序模拟值与实验数据符合较好,程序模型能够准确模拟溶液系统临界事故的功率变化。

     

  • 图  1  溶液系统几何结构示意图

    Figure  1.  Schematic View of Geometrical Structure of Solution System

    图  2  TRACY R100工况功率与温度模拟结果

    Figure  2.  Power and Temperature Simulation Results for TRACY R100 Experiment

    图  3  TRACY R072工况功率与反应性模拟结果

    Figure  3.  Power and Reactivity Simulation Results for TRACY R072 Experiment

    图  4  TRACY R072工况平均临界浓度、溶解氢气平均浓度、平均平衡浓度和气泡平均数量密度模拟结果

    Figure  4.  Simulation Results of Average Critical Concentration, Average Dissolved Hydrogen Concentration, Average Equilibrium Concentration and Average Number Density of Hydrogen Bubbles for TRACY R072 Experiment

    图  5  TRACY R072工况气泡平均半径和空泡份额模拟结果    

    Figure  5.  Simulation Results of Average Bubble Radius and Average Void Fraction for TRACY R072 Experiment

    图  6  TRACY R072工况功率与温度模拟结果

    Figure  6.  Power and Temperature Simulation Results for TRACY R072 Experiment

  • [1] MCLAUGHLIN T P, MONAHAN S P, PRUVOST N L, et al. A review of criticality accidents 2000 revision: LA-13638[R]. Los Alamos, New Mexico, USA: Los Alamos National Lab., 2000.
    [2] BASOGLU B, YAMAMOTO T, OKUNO H, et al. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling: JAERI-Data/Code 98-011[R]. lbaraki-ken, Japan: Japan Atomic Energy Research Institute, 1998.
    [3] PAIN C C, DE OLIVEIRA C R E, GODDARD A J H, et al. Non-linear space-dependent kinetics for the criticality assessment of fissile solutions[J]. Progress in Nuclear Energy, 2001, 39(1): 53-114. doi: 10.1016/S0149-1970(01)00003-8
    [4] 汪量子. 溶液堆的蒙特卡罗方法物理计算模型及特性研究[D]. 北京: 清华大学,2011.
    [5] SOUTO F J, KIMPLAND R H, HEGER A S. Analysis of the effects of radiolytic-gas bubbles on the operation of solution reactors for the production of medical isotopes[J]. Nuclear Science and Engineering, 2005, 150(3): 322-335. doi: 10.13182/NSE05-A2519
    [6] WINTER G E, COOLING C M, EATON M D. A semi-empirical model of radiolytic gas bubble formation and evolution during criticality excursions in uranyl nitrate solutions for nuclear criticality safety assessment[J]. Annals of Nuclear Energy, 2022, 165: 108614. doi: 10.1016/j.anucene.2021.108614
    [7] CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a vertical plate[J]. International Journal of Heat and Mass Transfer, 1975, 18(11): 1323-1329. doi: 10.1016/0017-9310(75)90243-4
    [8] LANE J A, MACPHERSON H G, MASLAN F. Fluid fuel reactors[M]. Reading: Addison-Wesley, 1958: 102.
    [9] BIDWELL R M, KING L D P, WYKOFF W R. Radiolytic yields of nitrogen and hydrogen in water boilers[J]. Nuclear Science and Engineering, 1956, 1(6): 452-454. doi: 10.13182/NSE56-A18460
    [10] SPIEGLER P, BUMPUS JR C F, NORMAN A. Production of void and pressure by fission track nucleation of radiolytic gas bubbles during power bursts in a solution reactor: NAA-SR-7086[R]. Canoga Park: Atomics International, 1962.
    [11] NAKAJIMA K, YAMANE Y, MIYOSHI Y. A kinetics code for criticality accident analysis of fissile solution systems: AGNES2: JAERI-Data/Code-2002-004[R]. Tokyo: Japan Atomic Energy Research Inst., 2002.
    [12] CELATA G P, D’ANNIBALE F, DI MARCO P, et al. Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems[J]. Experimental Thermal and Fluid Science, 2007, 31(6): 609-623. doi: 10.1016/j.expthermflusci.2006.06.006
    [13] KIMPLAND R H, KORNREICH D E. A two-dimensional multiregion computer model for predicting nuclear excursions in Aqueous Homogeneous Solution Assemblies[J]. Nuclear Science and Engineering, 1996, 122(2): 204-211. doi: 10.13182/NSE96-A24155
    [14] EPSTEIN P S, PLESSet M S. Erratum: on the stability of gas bubbles in liquid‐gas solutions[J]. The Journal of Chemical Physics, 1951, 19(2): 256.
  • 加载中
图(6)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  2
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-02
  • 修回日期:  2023-11-17
  • 刊出日期:  2024-04-12

目录

    /

    返回文章
    返回