Simulation Study on Steam Dump Control System of Small Pressurized Water Reactor Nuclear Power Plant
-
摘要: 小型压水堆核电厂通常采用结构紧凑的直流蒸汽发生器,在甩负荷工况下,其蒸汽压力急剧升高。为防止蒸汽压力过高对设备造成损坏,本文在建立小型压水堆一、二回路设备模型以及控制系统的基础上,分别基于压力模式、温度-压力和功率-压力模式设计蒸汽排放控制系统,并在甩负荷工况下开展小型压水堆系统的仿真研究。结果表明,在甩负荷工况下,与压力模式相比,温度-压力和功率-压力模式能够有效减小蒸汽压力的超调量。Abstract: Small pressurized water reactor nuclear power plant usually uses compact once-through steam generator, which has dramatically increased steam pressure under load rejection condition. In order to prevent damage to the system equipment caused by excessive steam pressure, based on the establishment of the mathematical model and the control system for the primary and secondary equipment of SPWR, this paper designs the steam dump control system based on pressure mode, temperature-pressure mode and power-pressure mode respectively, and carries out simulation research of SPWR system under load rejection condition. The results show that under load rejection condition, the temperature-pressure mode and power-pressure mode can effectively reduce the steam pressure overshoot compared with the pressure mode.
-
表 1 额定工况下小型压水堆系统的主要参数
Table 1. Main Parameters of the System for SPWR under Rated Operating Condition
参数 数值 堆芯 功率/ MW 200 冷却剂平均温度/℃ 310.30 冷却剂进口温度/℃ 299.75 冷却剂体积流量/ (m3·h−1) 15104.75 直流蒸汽发生器 一次侧运行压力/ MPa 15.5 一次侧冷却剂质量流量/( kg·s−1) 807.7 一次侧进口温度/℃ 320.85 一次侧出口温度/℃ 299.75 二次侧出口蒸汽压力/ MPa 4.67 蒸汽流量/( kg·s−1) 40.65 金属管壁密度/ (kg·m−3) 8470 金属管壁壁面导热系数/ [kW·(m2·℃) −1] 19.70 总换热面积/ m2 310.83 稳压器 压力/ MPa 15.5 水位/ m 2.9 汽轮机 进口焓值/( kJ·kg−1) 2937.23 转速/ (r·min−1) 3000 表 2 3种蒸汽排放模式下小型压水堆主要参数超调量 %
Table 2. Overshoot of Main Parameters for SPWR under Three Steam Dump Modes
蒸汽排放模式 蒸汽压力
超调量冷却剂平均
温度超调量汽轮机转
速超调量无旁排 18.8 2.35 4 压力 9.4 2.03 3.88 温度-压力 9.4 1.77 3.87 功率-压力 8.35 1.93 3.83 -
[1] WANG P F, JIANG Q F, WAN J S, et al. Robust controller design for small pressurized water reactors using non-smooth optimization[J]. Annals of Nuclear Energy, 2022, 165: 108775. doi: 10.1016/j.anucene.2021.108775 [2] ZHOU Y L, WANG D, QI T Y. Modelling, validation and control of steam turbine bypass system of thermal power plant[J]. Control Engineering and Applied Informatics, 2017, 19(3): 41-48. [3] 王宝生,王冬青,张建民,等. 压水堆核电厂蒸汽排放控制系统实时仿真研究[J]. 核动力工程,2011, 32(5): 38-44. [4] 周鑫. 船用核动力二回路系统负荷切换与蒸汽排放特性研究[D]. 哈尔滨: 哈尔滨工程大学,2020. [5] CHEN L K, CHEN C Q, WANG L N, et al. Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method[J]. Nuclear Engineering and Technology, 2023, 55(7): 2395-2406. doi: 10.1016/j.net.2023.03.033 [6] TANG Z P, WANG P F, FANG H W, et al. Development of a simulation platform for studying on primary frequency regulation characteristics of nuclear units[J]. Progress in Nuclear Energy, 2014, 70: 54-63. doi: 10.1016/j.pnucene.2013.07.012 [7] 马良玉,段新会,贡献,等. 变速调节锅炉给水泵实时仿真数学模型[J]. 华北电力大学学报,1998, 25(4): 64-69. [8] 张磊,陈国兵,刘继东,等. 船舶核动力装置蒸汽旁排工况的动态特性及影响因素分析[J]. 中国舰船研究,2021, 16(6): 209-215.