Study on Multi-physics Coupling Calculation of Xi’an Pulsed Reactor Based on MOOSE Platform
-
摘要: 反应堆中涉及一系列复杂相互作用的多物理耦合过程,随着高性能计算技术的迅速发展,基于多物理耦合的分析越来越受到重视。基于多物理耦合平台MOOSE开展了西安脉冲反应堆的稳态和瞬态多物理耦合计算研究,综合应用Picard迭代和Jacobian Free Newton-Krylov(JFNK)方法处理多物理耦合中的非线性问题,实现了三维中子扩散时空动力学、三维固体导热和一维流体流动传热的多物理耦合计算,计算了西安脉冲反应堆2 MW稳态运行和3.45$\$$(1$\$$表示一个有效缓发中子份额)脉冲运行条件下的反应堆行为,得到了堆芯三维功率和温度分布计算结果,计算结果与实验结果符合较好,证明了多物理耦合的正确性。开发的多物理耦合计算方法具有几何适应性好、耦合灵活等特点,具有应用于其他小型反应堆的潜力。Abstract: Nuclear reactors involve a series of multi-physics coupling processes with complex interactions. With the rapid development of high-performance computing technology, the analysis based on multi-physics coupling has been paid more and more attention. Based on the multi-physics coupling platform MOOSE, the steady-state and transient multi-physics coupling simulation of Xi'an pulsed reactor is studied. The nonlinear problems in multi-physics coupling are solved by Picard iteration and Jacobian Free Newton-Krylov (JFNK) method, and the multi-physical coupling calculation of three-dimensional neutron spatio-temporal dynamics, three-dimensional solid heat conduction and one-dimensional fluid flow and heat transfer is realized. The reactor behavior under 2 MW steady-state operation and 3.45$ \$$ (1$\$$ represents an effective delayed neutron fraction) pulse operation of Xi’an pulsed reactor is calculated, and the three-dimensional power and temperature distribution of the core are obtained. The calculated results are in good agreement with the experimental results, which proves the correctness of multi-physics coupling. The multi-physics coupling method developed in this paper has the advantages of good geometric adaptability and flexible coupling, and has the potential to be applied to other micro reactors.
-
Key words:
- Multi-physics coupling /
- Xi’an Pulsed Reactor /
- MOOSE /
- Steady-state analysis /
- Transient-state analysis
-
表 1 西安脉冲堆3.45$\$脉冲参数结果
Table 1. Calculation Results of 3.45$\$ in Xi’an Pulsed Reactor
对比项 脉冲峰功率/MW 脉冲峰功率
相对偏差/%半高宽/ms 半高宽相
对偏差/%实验值 4301.1 7.21 UZHCP[14]计算值 4071.1 −5.4 7.9 9.6 本文计算值 4426.1 −2.9 7.2 0.1 -
[1] 刘宙宇,许晓北,温兴坚,等. 确定论数值反应堆程序NECP-X的开发及应用[J]. 原子能科学技术,2022, 56(2): 226-238. [2] LI X Y, LIU X J, CHAI X, et al. Multi-physics coupling simulation of small mobile nuclear reactor with finite element-based models[J]. Computer Physics Communications, 2023, 293: 108900. doi: 10.1016/j.cpc.2023.108900 [3] ZHANG J D, LI T, SHEN Z R, et al. Investigations of multiphysics models on a megawatt-level heat pipe nuclear reactor based on high-fidelity approaches[J]. Nuclear Science and Engineering, 2024, 198(5): 1097-1121. doi: 10.1080/00295639.2023.2227838 [4] 陈立新,陈伟,张颖,等. 西安脉冲堆稳态堆芯脉冲运行安全性分析及新堆芯布置方案设计[J]. 核动力工程,2006, 27(S1): 9-12,17. [5] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778. doi: 10.1016/j.nucengdes.2009.05.021 [6] 张良,袁建新,赵巍,等. 西安脉冲反应堆在非脉冲瞬态工况下的动态特性研究[J]. 核动力工程,2020, 41(5): 1-7. [7] 田晓艳,陈森,杨宁,等. 西安脉冲堆反应性引入事故瞬态安全特性分析[J]. 原子能科学技术,2020, 54(11): 2089-2097. [8] ZHANG X Y, JIANG X B, ZHENG Y Q, et al. Three-dimensional transient analysis of Xi’an pulsed reactor by the coupled neutronics and thermal-hydraulics code[J]. Annals of Nuclear Energy, 2022, 175: 109254. doi: 10.1016/j.anucene.2022.109254 [9] KNOLL D A, KEYES D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397. doi: 10.1016/j.jcp.2003.08.010 [10] ZHANG H, GUO J, LU J N, et al. The comparison between nonlinear and linear preconditioning JFNK method for transient neutronics/thermal-hydraulics coupling problem[J]. Annals of Nuclear Energy, 2019, 132: 357-368. doi: 10.1016/j.anucene.2019.04.053 [11] GASTON D R, PERMANN C J, PETERSON J W, et al. Physics-based multiscale coupling for full core nuclear reactor simulation[J]. Annals of Nuclear Energy, 2015, 84: 45-54. doi: 10.1016/j.anucene.2014.09.060 [12] 景春元,陈达,朱继洲. 铀氢锆脉冲反应堆脉冲特性研究[J]. 计算物理,1999, 16(4): 442-448. [13] 陈立新,赵柱民,袁建新. 西安脉冲堆热工水力分析与脉冲特性分析[J]. 核动力工程,2006, 27(6): 1-4,17. [14] 沈锡荣,曾道桂,于颖锐. 西安脉冲堆脉冲参数分析[J]. 核动力工程,2002, 23(6): 40-42.