Development and Preliminary Verification of MCAT Platform for Fuel Element Multi-physics Coupling Analysis
-
摘要: 为进一步提高燃料性能预测精度、拓展燃料分析工具适用范围。本文针对典型棒状燃料元件,基于商用有限元分析程序COMSOL、系统安全分析程序ARSAC以及蒙特卡罗燃耗计算程序RMC,搭建了燃料元件多物理场耦合分析平台MCAT,实现了燃料模块、热工水力模块及中子物理模块的双向耦合。耦合平台采用模块化设计思想,利用中间数据接口管理耦合参数并明确各模块的“边界”,借助各模块的输入/输出文本文件实现耦合参数的更新与反馈,避免了对已有程序进行源码级修改。采用非对称Picard迭代算法实现模块间的双向耦合,将物理和热工模块看作黑盒子程序,在燃料热力学求解过程中依次调用RMC和ARSAC执行计算并交换数据,反复迭代直到收敛。本文从模块、接口及综合预测结果等方面对MCAT进行初步验证,结果表明MCAT能够准确预测燃料元件内功率、温度、结构变形及冷却剂状态等参数分布,表明MCAT平台在模块开发、耦合流程搭建及编码实现等方面的正确性。Abstract: In order to further improve the prediction accuracy of fuel performance and expand the application scope of fuel analysis tools, and based on the commercial finite element analysis code COMSOL, the system safety analysis code ARSAC and the Monte Carlo burnup calculation code RMC, a multi-physical field coupling analysis platform MCAT for typical rod fuel elements is established, which realizes the bidirectional coupling of fuel module, thermal hydraulic module and neutron physics module. The concept of modular designe is adopted for the coupling platform, the intermediate data interface is used to manage the coupling parameters and define the "boundary" of each module, and the updating and feedback of the coupling parameters are realized with the input/output text files of each module, thus avoiding the source code level modification of the existing codes. Asymmetric Picard iterative algorithm is used to realize bidirectional coupling between modules, and the physical and thermal modules are regarded as black box codes. In the process of solving fuel thermodynamics, RMC and ARSAC are called in turn to perform calculations and exchange data, and iteration is repeated until convergence. In this paper, MCAT is preliminarily verified from the aspects of module, interface and comprehensive prediction results. The results show that MCAT can accurately predict the distribution of parameters such as power, temperature, structural deformation and coolant state in fuel elements, which proves the correctness of MCAT platform in module development, coupling process construction and coding implementation.
-
Key words:
- Fuel performance analysis /
- Multi-physics coupling /
- Neutronics /
- Thermal-hydraulics /
- Picard iteration
-
表 1 各专业模块间的数据接口文件
Table 1. Data Interface Files between Modules
待数据交换数据 文件名称 定义域 格式 节点坐标 coordinate.dat 全场 1 单元信息 element.dat 全场 2 包壳外表面单元信息 element_b.dat 包壳外表面 2 温度(T) temperature.dat 全场 3 功率密度(qv) qv.dat 全场 3 燃耗(Bu) burnup.dat 全场 3 热流密度(qs) heatflux.dat 包壳外表面 3 冷却剂温度(Text) coolant_temp.dat 包壳外表面 3 冷却剂换热系数(hcool) coolant_h.dat 包壳外表面 3 表 2 验证算例主要参数
Table 2. Parameters Used in the Verification
参数 取值 芯块密度(理论密度的百分数)/% 95.2 芯块直径/mm 8.192 芯块高度/mm 13.46 235U富集度/% 4.45 包壳外径/mm 9.50 包壳内径/mm 8.36 活性段长度/mm 3657.60 气腔长度/mm 176 填充气体绝对压力/MPa 2.7 填充气体组分 He 0.96296 N2 0.02963 O2 0.00741 系统名义压力/MPa 15.5 冷却剂入口温度/℃ 292.8 冷却剂入口流量/(kg·s−1) 0.368 典型栅元水力当量直径/mm 11.778 -
[1] CACUCI D G. Handbook of nuclear engineering: Vol. 1: nuclear engineering fundamentals; Vol. 2: reactor design; Vol. 3: reactor analysis; Vol. 4: reactors of generations III and IV; Vol. 5: fuel cycles, decommissioning, waste disposal and safeguards[M]. New York: Springer, 2010: 1551-1582. [2] VAN UFFELEN P, SUZUKI M. 3.19 - Oxide fuel performance modeling and simulations[M]//KONINGS R J M. Comprehensive Nuclear Materials. Amsterdam: Elsevier Science, 2012: 535-577. [3] LASSMANN K, O’CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X [4] SOBA A, DENIS A, ROMERO L, et al. A high burnup model developed for the DIONISIO code[J]. Journal of Nuclear Materials, 2013, 433(1-3): 160-166. doi: 10.1016/j.jnucmat.2012.08.016 [5] YU J K, LEE H, LEMAIRE M, et al. Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system[J]. Annals of Nuclear Energy, 2020, 138: 107192. doi: 10.1016/j.anucene.2019.107192 [6] GARCÍA M, TUOMINEN R, GOMMLICH A, et al. A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors[J]. Annals of Nuclear Energy, 2020, 139: 107213. doi: 10.1016/j.anucene.2019.107213 [7] YU J K, LEE H, LEMAIRE M, et al. MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON[J]. Computer Physics Communications, 2019, 238: 1-18. doi: 10.1016/j.cpc.2019.01.001 [8] HALES J D, TONKS M R, GLEICHER F N, et al. Advanced multiphysics coupling for LWR fuel performance analysis[J]. Annals of Nuclear Energy, 2015, 84: 98-110. doi: 10.1016/j.anucene.2014.11.003 [9] CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013 [10] GASTON D R, PERMANN C J, PETERSON J W, et al. Physics-based multiscale coupling for full core nuclear reactor simulation[J]. Annals of Nuclear Energy, 2015, 84: 45-54. doi: 10.1016/j.anucene.2014.09.060 [11] SUIKKANEN H, RINTALA V, SCHUBERT A, et al. Development of coupled neutronics and fuel performance analysis capabilities between Serpent and TRANSURANUS[J]. Nuclear Engineering and Design, 2020, 359: 110450. doi: 10.1016/j.nucengdes.2019.110450 [12] YU J K, LEE H, KIM H, et al. Coupling of FRAPCON for fuel performance analysis in the Monte Carlo code MCS[J]. Computer Physics Communications, 2020, 251: 106748. doi: 10.1016/j.cpc.2019.03.001 [13] COMSOL, Inc. COMSOL Reference: COMSOL multiphysics reference manual[Z]. 2018. [14] WANG K, LI Z G, SHE D, et al. RMC - A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048 [15] 黄涛,邓坚,丁书华,等. 先进反应堆系统分析程序(ARSAC)LOCA类整体性效应实验验证[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019. [16] BERNARD L C, JACOUD J L, VESCO P. An efficient model for the analysis of fission gas release[J]. Journal of Nuclear Materials, 2002, 302(2-3): 125-134. doi: 10.1016/S0022-3115(02)00793-6 [17] 梁金刚. 反应堆蒙卡程序RMC大规模计算数据并行方法研究[D]. 北京: 清华大学,2015. [18] SENECAL J P, JI W. Comparison of novel multiphysics coupling methods in MOOSE[C]//Transactions of the American Nuclear Society, Vol. 113. Washington, D. C. , 2015. [19] 谢仲生,吴宏春,张少泓. 核反应堆物理分析[M]. 西安: 西安交通大学出版社,2004: 202-205.