高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料元件多物理场耦合分析平台MCAT开发及初步验证

齐飞鹏 刘振海 尹春雨 罗剑 刘勇 钱立波 周毅 王浩煜 陈平 李权

齐飞鹏, 刘振海, 尹春雨, 罗剑, 刘勇, 钱立波, 周毅, 王浩煜, 陈平, 李权. 燃料元件多物理场耦合分析平台MCAT开发及初步验证[J]. 核动力工程, 2024, 45(3): 28-36. doi: 10.13832/j.jnpe.2024.03.0028
引用本文: 齐飞鹏, 刘振海, 尹春雨, 罗剑, 刘勇, 钱立波, 周毅, 王浩煜, 陈平, 李权. 燃料元件多物理场耦合分析平台MCAT开发及初步验证[J]. 核动力工程, 2024, 45(3): 28-36. doi: 10.13832/j.jnpe.2024.03.0028
Qi Feipeng, Liu Zhenhai, Yin Chunyu, Luo Jian, Liu Yong, Qian Libo, Zhou Yi, Wang Haoyu, Chen Ping, Li Quan. Development and Preliminary Verification of MCAT Platform for Fuel Element Multi-physics Coupling Analysis[J]. Nuclear Power Engineering, 2024, 45(3): 28-36. doi: 10.13832/j.jnpe.2024.03.0028
Citation: Qi Feipeng, Liu Zhenhai, Yin Chunyu, Luo Jian, Liu Yong, Qian Libo, Zhou Yi, Wang Haoyu, Chen Ping, Li Quan. Development and Preliminary Verification of MCAT Platform for Fuel Element Multi-physics Coupling Analysis[J]. Nuclear Power Engineering, 2024, 45(3): 28-36. doi: 10.13832/j.jnpe.2024.03.0028

燃料元件多物理场耦合分析平台MCAT开发及初步验证

doi: 10.13832/j.jnpe.2024.03.0028
详细信息
    作者简介:

    齐飞鹏(1993—),男,工程师,现主要从事燃料先进分析算法及行为建模等方面的研究,E-mail: zevsky@126.com

  • 中图分类号: TL352

Development and Preliminary Verification of MCAT Platform for Fuel Element Multi-physics Coupling Analysis

  • 摘要: 为进一步提高燃料性能预测精度、拓展燃料分析工具适用范围。本文针对典型棒状燃料元件,基于商用有限元分析程序COMSOL、系统安全分析程序ARSAC以及蒙特卡罗燃耗计算程序RMC,搭建了燃料元件多物理场耦合分析平台MCAT,实现了燃料模块、热工水力模块及中子物理模块的双向耦合。耦合平台采用模块化设计思想,利用中间数据接口管理耦合参数并明确各模块的“边界”,借助各模块的输入/输出文本文件实现耦合参数的更新与反馈,避免了对已有程序进行源码级修改。采用非对称Picard迭代算法实现模块间的双向耦合,将物理和热工模块看作黑盒子程序,在燃料热力学求解过程中依次调用RMC和ARSAC执行计算并交换数据,反复迭代直到收敛。本文从模块、接口及综合预测结果等方面对MCAT进行初步验证,结果表明MCAT能够准确预测燃料元件内功率、温度、结构变形及冷却剂状态等参数分布,表明MCAT平台在模块开发、耦合流程搭建及编码实现等方面的正确性。

     

  • 图  1  MCAT耦合分析流程

    Figure  1.  Flow Chart of MCAT Coupling Analysis

    图  2  接口文件数据格式

    Figure  2.  Data Formate in Different Interface Files

    图  3  COMSOL-RMC-ARSAC耦合数据传递示意图

    ρext—冷却剂密度,g/cm3

    Figure  3.  Schematic of the Data Flow among COMSOL, RMC and ARSAC

    图  4  燃料棒内气腔压力对比

    Figure  4.  Comparison of Plenum Pressure in Fuel Rod

    图  5  裂变气体释放份额及燃料棒内自由空腔体积对比

    Figure  5.  Comparison of Fission Gas Release Fraction and Free Volume in Fuel Rod

    图  6  芯块-包壳最小间隙对比

    Figure  6.  Comparison of Minimum Gap Width between Fuel Pellet and Cladding

    图  7  燃料棒温度分布云图

    Figure  7.  Distribution of Temperature in Fuel Rod

    图  8  芯块中心温度沿轴向分布对比

    Figure  8.  Comparison of Pellet Center Temperature Distribution along the Axial Direction

    图  9  芯块外表面温度沿轴向分布对比

    Figure  9.  Comparison of Pellet Outer Surface Temperature Distribution along the Axial Direction

    图  10  间隙换热系数沿轴向分布对比

    Figure  10.  Comparison of Gap Heat Transfer Coefficient along the Axial Direction

    图  11  映射前、后芯块功率密度分布

    Figure  11.  Distributions of Pellet Power Density before and after Data Mapping

    图  12  燃料棒线功率分布对比

    Figure  12.  Comparison of Linear Power Distribution of Fuel Rod

    图  13  2171.70 mm高度处燃料棒径向功率分布对比

    Figure  13.  Comparison of Radial Power Distribution at the Height of 2171.70 mm

    图  14  不同时刻芯块中心功率沿轴向分布

    Figure  14.  Power Distribution along Axial Direction in the Pellet Center at Different Time

    图  15  不同时刻芯块中心温度分布(MCAT耦合)

    Figure  15.  Pellet Center Temperature Distribution at Different Time (MCAT Coupling)

    图  16  不同时刻冷却剂温度分布(MCAT耦合)

    Figure  16.  Coolant Temperature Distribution at Different Time (MCAT Coupling)

    表  1  各专业模块间的数据接口文件

    Table  1.   Data Interface Files between Modules

    待数据交换数据 文件名称 定义域 格式
    节点坐标 coordinate.dat 全场 1
    单元信息 element.dat 全场 2
    包壳外表面单元信息 element_b.dat 包壳外表面 2
    温度(T temperature.dat 全场 3
    功率密度(qv qv.dat 全场 3
    燃耗(Bu burnup.dat 全场 3
    热流密度(qs heatflux.dat 包壳外表面 3
    冷却剂温度(Text coolant_temp.dat 包壳外表面 3
    冷却剂换热系数(hcool coolant_h.dat 包壳外表面 3
    下载: 导出CSV

    表  2  验证算例主要参数

    Table  2.   Parameters Used in the Verification

    参数 取值
    芯块密度(理论密度的百分数)/% 95.2
    芯块直径/mm 8.192
    芯块高度/mm 13.46
    235U富集度/% 4.45
    包壳外径/mm 9.50
    包壳内径/mm 8.36
    活性段长度/mm 3657.60
    气腔长度/mm 176
    填充气体绝对压力/MPa 2.7
    填充气体组分 He 0.96296
    N2 0.02963
    O2 0.00741
    系统名义压力/MPa 15.5
    冷却剂入口温度/℃ 292.8
    冷却剂入口流量/(kg·s−1) 0.368
    典型栅元水力当量直径/mm 11.778
    下载: 导出CSV
  • [1] CACUCI D G. Handbook of nuclear engineering: Vol. 1: nuclear engineering fundamentals; Vol. 2: reactor design; Vol. 3: reactor analysis; Vol. 4: reactors of generations III and IV; Vol. 5: fuel cycles, decommissioning, waste disposal and safeguards[M]. New York: Springer, 2010: 1551-1582.
    [2] VAN UFFELEN P, SUZUKI M. 3.19 - Oxide fuel performance modeling and simulations[M]//KONINGS R J M. Comprehensive Nuclear Materials. Amsterdam: Elsevier Science, 2012: 535-577.
    [3] LASSMANN K, O’CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X
    [4] SOBA A, DENIS A, ROMERO L, et al. A high burnup model developed for the DIONISIO code[J]. Journal of Nuclear Materials, 2013, 433(1-3): 160-166. doi: 10.1016/j.jnucmat.2012.08.016
    [5] YU J K, LEE H, LEMAIRE M, et al. Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system[J]. Annals of Nuclear Energy, 2020, 138: 107192. doi: 10.1016/j.anucene.2019.107192
    [6] GARCÍA M, TUOMINEN R, GOMMLICH A, et al. A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors[J]. Annals of Nuclear Energy, 2020, 139: 107213. doi: 10.1016/j.anucene.2019.107213
    [7] YU J K, LEE H, LEMAIRE M, et al. MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON[J]. Computer Physics Communications, 2019, 238: 1-18. doi: 10.1016/j.cpc.2019.01.001
    [8] HALES J D, TONKS M R, GLEICHER F N, et al. Advanced multiphysics coupling for LWR fuel performance analysis[J]. Annals of Nuclear Energy, 2015, 84: 98-110. doi: 10.1016/j.anucene.2014.11.003
    [9] CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013
    [10] GASTON D R, PERMANN C J, PETERSON J W, et al. Physics-based multiscale coupling for full core nuclear reactor simulation[J]. Annals of Nuclear Energy, 2015, 84: 45-54. doi: 10.1016/j.anucene.2014.09.060
    [11] SUIKKANEN H, RINTALA V, SCHUBERT A, et al. Development of coupled neutronics and fuel performance analysis capabilities between Serpent and TRANSURANUS[J]. Nuclear Engineering and Design, 2020, 359: 110450. doi: 10.1016/j.nucengdes.2019.110450
    [12] YU J K, LEE H, KIM H, et al. Coupling of FRAPCON for fuel performance analysis in the Monte Carlo code MCS[J]. Computer Physics Communications, 2020, 251: 106748. doi: 10.1016/j.cpc.2019.03.001
    [13] COMSOL, Inc. COMSOL Reference: COMSOL multiphysics reference manual[Z]. 2018.
    [14] WANG K, LI Z G, SHE D, et al. RMC - A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [15] 黄涛,邓坚,丁书华,等. 先进反应堆系统分析程序(ARSAC)LOCA类整体性效应实验验证[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019.
    [16] BERNARD L C, JACOUD J L, VESCO P. An efficient model for the analysis of fission gas release[J]. Journal of Nuclear Materials, 2002, 302(2-3): 125-134. doi: 10.1016/S0022-3115(02)00793-6
    [17] 梁金刚. 反应堆蒙卡程序RMC大规模计算数据并行方法研究[D]. 北京: 清华大学,2015.
    [18] SENECAL J P, JI W. Comparison of novel multiphysics coupling methods in MOOSE[C]//Transactions of the American Nuclear Society, Vol. 113. Washington, D. C. , 2015.
    [19] 谢仲生,吴宏春,张少泓. 核反应堆物理分析[M]. 西安: 西安交通大学出版社,2004: 202-205.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  30
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-08-27
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回