Research on the Neutron-photon Transport and Heat Calculation Method Based on MOSASAUR Code
-
摘要: 为了准确计算快堆堆芯中所有裂变材料与非裂变材料释热,并精细考虑中子、光子、电子在堆芯中的能量沉积,以提高快堆堆芯释热率计算精度。本文基于确定论两步法研究并实现了中子-光子输运堆芯释热率计算方法,通过求解裂变源中子输运方程和固定源光子输运方程得到中子和光子注量率,基于比释动能(KERMA)因子方法计算瞬发中子和瞬发光子释热率,利用比例因子方法计算缓发光子产生矩阵,在MOSASAUR程序内通过内耦合方式实现了快堆中子-光子输运和堆芯释热率计算。计算铅铋快堆RBEC-M基准题的功率分布并与蒙特卡罗程序计算结果进行对比,燃料组件总功率相对偏差在±4%以内,非燃料组件总功率相对偏差在±10%以内,所有组件光子功率相对偏差在±10%以内。因此,本文研究的中子-光子输运堆芯释热率计算方法对快堆堆芯释热计算具有较高精度。
-
关键词:
- 中子-光子输运 /
- 比释动能(KERMA)因子 /
- 快堆 /
- 缓发光子 /
- 高阶光子输运
Abstract: To accurately calculate the heat released by all fissile and non-fissile materials in the fast reactor core, with a meticulous consideration of energy deposition by neutrons, photons, and electrons within the core, so as to enhance the precision of heat generation calculations, this paper, based on the deterministic two-step method, explores and implements a neutron-photon coupled transport calculation method. By solving the fission-source neutron transport equation and the fixed-source photon transport equation, the neutron and photon flux are obtained. Prompt neutron and prompt photon heat generation rates are calculated using the KERMA factor method. The delayed photon production matrix is computed using the scaling factor method. A self-coupling method in the MOSASAUR code is employed to achieve neutron-photon transport and heat generation calculations within the fast reactor core. The power distribution of the lead-bismuth fast reactor RBEC-M benchmark is compared with the results from Monte Carlo code. The relative deviations of total power are within ±4% for fuel assemblies, within ±10% for non-fuel assemblies, and within ±10% for all assemblies' photon power. Therefore, the neutron-photon transport and heat calculation method studied in this article has a high level of accuracy for the fast reactor cores.-
Key words:
- Neutron-photon transport /
- KERMA factor /
- Fast reactor /
- Delayed gamma /
- High-order photon transport
-
表 1 RBEC-M裂变核素参数
Table 1. Parameters of Fissionable Nuclides of RBEC-M
类型 核素种类 235U 238U 238Pu 239Pu 240Pu 241Pu 242Pu 241Am 缓发光子能量/MeV 6.50 8.48 5.12 5.31 6.62 6.40 6.83 5.51 缓发电子能量/MeV 6.33 8.25 5.26 5.17 6.49 6.58 7.48 5.62 裂变能量/MeV 180.57 181.04 189.98 188.42 186.36 188.99 188.47 190.83 堆芯1区裂变率比例/% 0.93 10.79 0.90 68.63 4.98 12.96 0.70 0.10 堆芯2区裂变率比例/% 0.92 11.01 0.90 68.54 4.99 12.83 0.70 0.10 堆芯3区裂变率比例/% 0.92 11.60 0.89 68.07 4.90 12.83 0.69 0.10 增殖区裂变率比例/% 7.60 92.40 表 2 各类组件缓发光子和缓发电子平均能量
Table 2. Average Energy of Delayed Gamma and Delayed Beta of Core Components
能量 组件类型 堆芯1区 堆芯2区 堆芯3区 增殖区 缓发光子平均能量/MeV 5.88 5.88 5.90 8.33 缓发电子平均能量/MeV 5.78 5.78 5.80 8.10 表 3 功率构成计算结果
Table 3. Calculation Results for Power Components
功率类型 蒙特卡罗程序
计算值/MWMOCO
计算值/MW相对偏差/% 中子功率 765.08 769.1 0.53 光子功率 109.7 104.8 –4.47 瞬发光子能量 84.05 82.33 –2.05 缓发电子能量 25.19 26.37 4.68 缓发光子能量 25.68 22.49 –12.42 -
[1] BOUCHARD J, BENNETT R. Generation IV advanced nuclear energy systems[J]. Nuclear Plant Journal, 2008, 26(5): 42-45. [2] ZHANG B, WANG L J, LOU L, et al. Development and verification of lead-bismuth cooled fast reactor calculation code system Mosasaur[J]. Frontiers in Energy Research, 2023, 10: 1055405. doi: 10.3389/fenrg.2022.1055405 [3] KIM K S, HONG S G. Gamma transport and diffusion calculation capability coupled with neutron transport simulation in KARMA 1.2[J]. Annals of Nuclear Energy, 2013, 57: 59-67. doi: 10.1016/j.anucene.2013.01.047 [4] 徐林杰. 快堆NAS程序光子释热计算功能开发研究[J]. 中国原子能科学研究院年报: 英文版,2018(1): 97-98,125-126. [5] JIA X Q, ZHENG Y Q, DU X N, et al. Verification of SARAX code system in the reactor core transient calculation based on the simplified EBR-II benchmark[J]. Nuclear Engineering and Technology, 2022, 54(5): 1813-1824. doi: 10.1016/j.net.2021.10.045 [6] PARK H, JEON B K, YANG W S, et al. Verification and validation tests of gamma library of MC2 -3 for coupled neutron and gamma heating calculation[J]. Annals of Nuclear Energy, 2020, 146: 107609. doi: 10.1016/j.anucene.2020.107609 [7] NELSON A G, SMITH M A, HEIDET F. Verification of the diffusion and transport solvers within DIF3D for 3D hexagonal geometries[J]. EPJ Web of Conferences, 2021, 247: 10030. doi: 10.1051/epjconf/202124710030 [8] SMITH M A, LEE C H, HILL R N. GAMSOR: gamma source preparation and DIF3D flux solution: ANL/NE-16/50[R]. Argonne: Argonne National Laboratory, 2016. [9] KATAKURA J I, YOSHIDA T, OYAMATSU K, et al. Estimation of beta- and gamma-ray spectra for JENDL FP decay data file[J]. Journal of Nuclear Science and Technology, 2001, 38(7): 470-476. doi: 10.1080/18811248.2001.9715056 [10] GOORLEY T, JAMES M, BOOTH T, et al. Features of MCNP6[J]. Annals of Nuclear Energy, 2016, 87: 772-783. doi: 10.1016/j.anucene.2015.02.020 [11] PETERSON J, ILAS G. Calculation of heating values for the high flux isotope reactor[R]. La Grange Park: American Nuclear Society, Inc. , 2012. [12] MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Lab. , 2017. [13] SIENICKI J J, MOISSEYTSEV A, YANG W S, et al. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR)/Lead-cooled Fast Reactor (LFR) and supporting research and development[R]. Argonne: Argonne National Laboratory, 2008.