Research and Application of Single-Point Calibration Technology Based on Dynamic-xenon Condition
-
摘要: 核电厂在换料大修后的升功率期间会在指定功率水平实施堆外功率量程探测器(简称堆外探测器)校刻试验,以指示准确的堆芯功率水平和轴向功率偏差。本文提出了在动态氙条件下进行堆外探测器校刻的方法,基于动态氙条件单次堆芯通量测量试验,结合堆芯物理分析程序SPARK提供的动态氙理论库,进行堆芯功率重构,然后采用单点校刻方式完成堆外探测器校刻;整个过程无需长时间等待堆芯达到氙平衡状态,具有较高的经济效益。采用田湾核电站5号机组第2次大修升功率期间的实测数据对该方法进行验证,功率水平误差全部在±1.0%以内,轴向功率偏差的误差全部在±0.5%以内。验证结果表明,本文提出的动态氙条件下单点校刻方法能够在达到指定功率水平2 h后即完成堆外探测器校刻任务,且校刻系数具有较高的计算精度。Abstract: During the power-elevation after refueling overhaul, the nuclear power plant will carry out calibration test of ex-core power range detector (referred to as ex-core detector) at the specified power level to indicate the accurate core power level and axial power deviation. This paper proposes an ex-core detector calibration method based on dynamic-xenon condition. Based on the single core flux measurement test under dynamic xenon condition, and combined with the dynamic xenon theoretical library provided by the core physical analysis code SPARK, the core power is reconstructed, and then the calibration of the ex-core detector is completed by single-point calibration. The long waiting time for xenon equilibrium isn’t required in the whole process, which has high economic benefits. The method is verified by the measured data of Unit 5 in Tianwan Nuclear Power Station during power elevation in the second overhaul, and the errors of power level and axial power deviation are all within ±1.0% and ±0.5%, respectively. The verification results show that the single-point calibration method proposed in this paper can complete the calibration of ex-core detector within 2 h after the specified power level is reached, and the calibration coefficient has high calculation accuracy.
-
表 1 75%FP功率水平校刻系数结果
Table 1. Calibration Coefficient Results at 75%FP
通道 校刻系数 24 h多点校刻 2 h单点校刻 误差 通道1 α 1.553 1.623 0.070 KU 0.873 0.874 0.001 KL 0.861 0.861 0.000 通道2 α 1.567 1.637 0.070 KU 0.788 0.790 0.002 KL 0.795 0.795 0 通道3 α 1.547 1.624 0.077 KU 0.886 0.888 0.002 KL 0.841 0.842 0.001 通道4 α 1.592 1.652 0.060 KU 0.893 0.895 0.002 KL 0.859 0.859 0.000 表 2 100%FP功率水平校刻系数结果
Table 2. Calibration Coefficient Results at 100%FP
通道 校刻系数 24 h多点校刻 2 h单点校刻 误差 通道1 α 1.624 1.622 −0.002 KU 0.842 0.847 0.005 KL 0.833 0.837 0.004 通道2 α 1.646 1.635 −0.011 KU 0.761 0.766 0.005 KL 0.770 0.774 0.004 通道3 α 1.630 1.624 −0.006 KU 0.857 0.862 0.005 KL 0.815 0.820 0.005 通道4 α 1.663 1.653 −0.010 KU 0.862 0.867 0.005 KL 0.831 0.835 0.004 表 3 75%FP功率水平通道1校刻结果
Table 3. Calibration Results for Channel 1 at 75%FP
状态点 实测
功率/
%FP探测器
反馈功率/
%FP功率
误差/
%FP堆内轴向
功率偏差/
%FP堆外轴向
功率偏差/
%FP轴向功率
偏差的
误差/%FP1 73.3 73.3 0 1.03 1.07 −0.04 2 73.3 73.0 0.3 −0.26 −0.06 −0.20 3 73.2 73.1 0.1 −1.16 −1.18 0.02 4 73.3 73.5 −0.2 −2.75 −2.73 −0.02 5 73.1 73.3 −0.2 −3.96 −4.00 0.04 6 73.3 73.5 −0.2 −4.79 −4.98 0.19 表 4 100%FP功率水平通道1校刻结果
Table 4. Calibration Results for Channel 1 at 100%FP
状态点 实测
功率/
%FP探测器
反馈功率/
%FP功率
误差/
%FP堆内轴向
功率偏差/
%FP堆外轴向
功率偏差/
%FP轴向功率
偏差的
误差/%FP1 97.5 97.5 0 −1.45 −1.25 −0.20 2 97.6 98.4 0.8 −3.11 −3.01 −0.10 3 97.6 98.1 0.5 −4.22 −4.38 0.16 4 97.6 98.3 0.7 −5.78 −5.61 −0.17 5 97.6 98.3 0.7 −7.53 −7.52 −0.01 -
[1] 竹生东,邓力,李树,等. 堆外核仪表系统(RPN)的预设效验系数理论计算[J]. 核动力工程,2004, 25(2): 152-155. doi: 10.3969/j.issn.0258-0926.2004.02.013 [2] 王银丽,张芸,罗炜,等. 华龙一号核仪表系统定期试验方案设计[J]. 上海交通大学学报,2018, 52(S1): 53-57. doi: 10.16183/j.cnki.jsjtu.2018.S1.011 [3] 张洪. 大亚湾核电站堆芯功率分布测量及其处理[J]. 核科学与工程,1997, 17(1): 1-11. [4] 任意. 三代压水堆堆外核测仪表调试方案研究与设计[J]. 自动化仪表,2021, 42(S1): 237-241. doi: 10.16086/j.cnki.issn1000-0380.2021030132 [5] 万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22. doi: 10.13832/j.jnpe.2021.05.0015 [6] 郭建,曹云龙. 北方某核电厂升功率物理试验优化的论证及实施[J]. 核科学与工程,2017, 37(3): 514-519. doi: 10.3969/j.issn.0258-0918.2017.03.027 [7] 高鸣,黄尧,王兴,等. 堆芯中子通量测量系统通道可用性分析与优化[J]. 电子技术应用,2022, 48(S1): 105-110. doi: 10.16157/j.issn.0258-7998.2022.S1.023 [8] XUE B, FAN Z G, LI J D, et al. Ex-core detectors calibration tests on LingAo Unit 3[C]//Proceedings of 19th International Conference on Nuclear Engineering. Chiba, Japan: The Japan Society of Mechanical Engineers, 2011. [9] 李文淮,张香菊,党珍,等. 一种标定核反应堆堆外探测器的方法: 中国,201510328694.6 [P]. 2015-10-28. [10] WAN C H, BAI J H, HUANG Z P, et al. Effects research of multiple-cycle nuclide-number-density distributions on dynamic rod worth measurement[J]. Nuclear Engineering and Design, 2022, 400: 112061. doi: 10.1016/j.nucengdes.2022.112061 [11] 付元光,邓力,李刚,等. 基于JMCT的堆外核仪表系统刻度系数计算[J]. 原子能科学技术,2018, 52(10): 1780-1785. doi: 10.7538/yzk.2017.youxian.0767