高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐沿螺旋十字型单棒层流混合对流传热数值研究

姜殿强 张大林 陈凯龙 田文喜 秋穗正 苏光辉

姜殿强, 张大林, 陈凯龙, 田文喜, 秋穗正, 苏光辉. 熔盐沿螺旋十字型单棒层流混合对流传热数值研究[J]. 核动力工程, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076
引用本文: 姜殿强, 张大林, 陈凯龙, 田文喜, 秋穗正, 苏光辉. 熔盐沿螺旋十字型单棒层流混合对流传热数值研究[J]. 核动力工程, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076
Jiang Dianqiang, Zhang Dalin, Chen Kailong, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod[J]. Nuclear Power Engineering, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076
Citation: Jiang Dianqiang, Zhang Dalin, Chen Kailong, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod[J]. Nuclear Power Engineering, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076

熔盐沿螺旋十字型单棒层流混合对流传热数值研究

doi: 10.13832/j.jnpe.2024.03.0076
基金项目: 国家重点研发计划(2020YFB1902000)
详细信息
    作者简介:

    姜殿强(1998—),男,博士研究生,现主要从事核反应堆热工水力相关研究,E-mail: 2921952733@qq.com

    通讯作者:

    张大林, E-mail: dlzhang@mail.xjtu.edu.cn

  • 中图分类号: TL334

Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod

  • 摘要: 西安交通大学提出的小型氟盐冷却高温堆(FuSTAR)概念设计采用了螺旋十字型燃料组件。为研究熔盐在螺旋十字型燃料组件的混合对流传热特性,建立了螺旋十字型单棒通道模型。采用计算流体力学(CFD)方法,以实验数据验证数值计算模型,94%壁温数据点的数值计算值与实验测量值之差在±5℃的范围内,94%平均传热系数数据点的数值计算值与实验测量值相对误差范围是−15%~15%。熔盐沿螺旋十字型棒混合对流传热的结果表明,自然对流在整体混合对流传热的影响程度与入口温度、热流密度有关;Φ/GzΦ为自然对流无量纲数的组合变量,Gz为格雷兹数)能更合理地评估自然对流在整体对流传热中的影响程度。此外,拟合了在30≤Re≤500,6≤Pr≤26,600≤Gr≤42000(Re为雷诺数,Pr为普朗特数,Gr为格拉晓夫数)时熔盐沿螺旋十字型单棒的层流混合对流传热关系式。

     

  • 图  1  螺旋十字型单棒通道的几何形状

    D—圆管内径;R1—叶谷半径,R1=0.5 mm;R2—叶峰半径,R2=3.5 mm;H—螺旋十字型棒长度;S—螺距;xyzo—笛卡尔坐标系

    Figure  1.  Geometry of Helical Cruciform Single-Rod Channel

    图  2  不同网格尺寸下对流传热系数沿流动方向的变化

    Figure  2.  Change of Convective Heat Transfer Coefficient along the Flow Direction under Different Mesh Sizes

    图  3  网格横截面示意图

    Figure  3.  Cross-Section Diagram of the Grid

    图  4  Dowtherm A和FLiBe的Pr比较

    Figure  4.  Pr Comparision between Dowtherm A and FLiBe Salt

    图  5  实验段的温度测量截面和壁面温度测点位置

    Figure  5.  Temperature Measuring Cross-Section and Wall Temperature Measuring Points of Test Section

    图  6  实验条件下(直流加热)壁温实验值与模拟值差值

    Figure  6.  Difference of Wall Temperature between Experimental and Numerical Values under Experimental Conditions (Direct Current Heating)

    图  7  恒定均匀热流密度条件下平均表面传热系数实验值和模拟值相对误差

    Figure  7.  Relative Error between Experimental Value and Simulated Value of Average Surface Heat Transfer Coefficient under Constant Uniform Heat Flux

    图  8  Φ/GzGr的变化规律

    Figure  8.  Change Law of Φ/Gz with Gr

    图  9  Ra1/4/NuFRe的变化规律

    实心数据点为混合对流传热计算结果,空心数据点为强迫对流计算结果,下同

    Figure  9.  Fig. 9 Change Law of Ra1/4/NuF with Re

    图  10  RiΦ/GzRa1/4/NuF的关系

    Figure  10.  Relationship between Ra1/4/NuF and Ri, Φ/Gz and Ri

    表  1  数值计算的工况

    Table  1.   Conditions for Numerical Calculation

    工况编号 q/(kW·m−2) Tin/℃ Re
    Case 1-1 14.9 500 35
    Case 1-2 40
    Case 1-3 50
    Case 1-4 55
    Case 1-5 70
    Case 1-6 600 50
    Case 1-7 70
    Case 1-8 100
    Case 1-9 130
    Case 1-10 700 130
    Case 1-11 350
    Case 1-12 1000
    Case 1-13 2000
    Case 2-1 24.9 500 60
    Case 2-2 70
    Case 2-3 100
    Case 2-4 600 100
    Case 2-5 140
    Case 2-6 300
    Case 2-7 700 140
    Case 2-8 300
    Case 2-9 500
    Case 3-1 149.4 500 330
    Case 3-2 340
    Case 3-3 350
    Case 3-4 450
    Case 3-5 800
    Case 3-6 1000
    Case 3-7 600 500
    Case 3-8 1000
    Case 3-9 2000
    Case 3-10 4000
    Case 3-11 5000
    Case 3-12 6000
    Case 3-13 700 1000
    Case 3-14 2000
    Case 3-15 4000
    Case 3-16 5000
    下载: 导出CSV

    表  2  Dowtherm A、316不锈钢和熔盐FLiBe的物理性质

    Table  2.   Physical Properties of Dowtherm A, 316 Stainless Steel and FLiBe

    物理量 Dowtherm A (T/℃) 316 不锈钢 (T/℃) 氟盐FLiBe (T/℃)
    密度ρ/(kg·m−3) $\rho = 1078 - 0.85T{\text{ }}$ 8000 $ \rho=2330.0-0.42\left(T+273.15\right) $
    动力粘度μ/(Pa·s−1) $\mu = \dfrac{{0.130}}{{{T^{1.072}}}}$ $ \mu=0.000116\mathrm{exp}{\left(3760\mathord{\left/\vphantom{3760T}\right.}T\right)} $
    比热容cp/(J·kg−1·℃−1) ${c_p} = 1518 + 2.82T$ 500 2380.6
    热导率λ/(W·m−1·K−1) $k = 0.142 - 0.00016T$ 16.3 1.1
    电导率/(S·m−1) $ \dfrac{100}{7.4\times10^{-5}\times\left(1+9.4\times10^{-4}T\right)} $
    热膨胀率β/K−1 $\dfrac{1}{{995.1 - T}}$ $\dfrac{1}{{5557.1 - T}}$
    下载: 导出CSV

    表  3  网格参数

    Table  3.   Mesh Parameters

    网格编号 最小网格尺寸/mm 基础网格尺寸/mm 网格数量/万
    #1 0.8 0.8 22.7
    #2 0.7 0.7 42.5
    #3 0.5 0.5 115.0
    #4 0.3 0.4 299.2
    #5 0.2 0.3 580.1
    #6 0.15 0.25 1431.1
    下载: 导出CSV

    表  4  本文验证的实验数据

    Table  4.   Experimental Data Verified in this Paper

    工况编号 Tin/℃ q/(W·m−2) Re 电流/A Tw/℃ h/(W·m−2·K−1)
    测点1 测点2 A-A截面 B-B截面
    工况1 90 9682.5 1693 223 134.9 141.7 340 327
    工况2 90 22988.3 2455 263 143.7 154.2 544 514
    工况3 70 23760.6 3518 351 126.6 135.8 557 530
    工况4 70 40793.6 5897 459 134.9 144.1 733 693
    工况5 95 8685.7 3152 212 122.2 127.8 467 446
    工况6 95 12112.5 4422 250 123.1 127.5 563 535
    工况7 80 25095.9 4016 359 136.3 145.6 572 542
    工况8 80 29546.9 4761 389 138.1 147.6 621 588
    下载: 导出CSV
  • [1] ZHANG D, LIU L, LIU M, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979
    [2] JIANG D, ZHANG D, LI X, et al. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112345. doi: 10.1016/j.rser.2022.112345
    [3] 张大林,秦浩,王式保,等. 固有安全一体化小型氟盐冷却高温堆初步概念设计研究[J]. 中国基础科学,2021, 23(4): 15-20. doi: 10.3969/j.issn.1009-2412.2021.04.003
    [4] MALONE J, TOTEMEIER A, SHAPIRO N, et al. Lightbridge Corporation’s Advanced Metallic Fuel for Light Water Reactors[J]. Nuclear Technology, 2012, 180(3): 437-442. doi: 10.13182/NT12-A15354
    [5] FENG D. Innovative Fuel Designs for High Power Density Pressurized Water Reactor[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
    [6] MOHANTA L, CHEUNG F B, BAJOREK S M, et al. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids[J]. Nuclear Engineering and Design, 2017, 312: 99-105. doi: 10.1016/j.nucengdes.2016.07.023
    [7] SUNG-HO K, EL-GENK M S. Heat transfer experiments for low flow of water in rod bundles[J]. International Journal of Heat and Mass Transfer, 1989, 32(7): 1321-1336. doi: 10.1016/0017-9310(89)90032-X
    [8] CONBOY T M. Assessment of Helical-Cruciform Fuel Rods for High Power Density LWRs[D]. Massachusetts: Massachusetts Institute of Technology, 2010.
    [9] 张琦,顾汉洋,肖瑶,等. 5x5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
    [10] ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
    [11] CONG T, ZHANG R, WANG B, et al. Single-phase flow in helical cruciform fuel assembly with conjugate heat transfer[J]. Progress in Nuclear Energy, 2022, 147: 104199. doi: 10.1016/j.pnucene.2022.104199
    [12] JIANG D, ZHANG D, TIAN W, et al. Numerical study on transverse mixing characteristics of flow sweeping in helical cruciform rod bundle[J]. Applied Thermal Engineering, 2022: 119935.
    [13] JIANG D, DALIN ZHANG, WENXI TIAN, et al. Experimental study on flow and heat transfer of medium-Prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 1-14.
    [14] JIANG D, ZHANG D, CHEN K, et al. Experimental Study on Flow and Heat Transfer of High Prandtl Number Fluid along Helical Cruciform Single Rod[C]//International Conference on Nuclear Engineering, Proceedings. Kyoto: American Society of Mechanical Engineers (ASME), 2023.
    [15] ZWEIBAUM N. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors[D]. California: University of California, Berkeley, 2015.
    [16] JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0
    [17] LIU D, GU H. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113
    [18] LI J, XIAO Y, GU H, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151
    [19] CHURCHILL S W. A comprehensive correlating equation for laminar, assisting, forced and free convection[J]. AIChE Journal, 1977, 23(1): 10-16. doi: 10.1002/aic.690230103
    [20] EL-GENK M S, SU B, GUO Z. Experimental studies of forced, combined and natural convection of water in vertical nine-rod bundles with a square lattice[J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2359-2374. doi: 10.1016/S0017-9310(05)80120-6
    [21] OLIVER D R. The effect of natural convection on viscous-flow heat transfer in horizontal tubes[J]. Chemical Engineering Science, 1962, 17(5): 335-350. doi: 10.1016/0009-2509(62)80035-9
    [22] ZHANG S. Mixed convective heat transfer of medium-Prandtl-number fluids in horizontal circular tubes[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122740. doi: 10.1016/j.ijheatmasstransfer.2022.122740
    [23] A. R. BROWN, M. A. THOMAS. Combined Free and Forced Convection Heat Transfer for Laminar Flow in Horizontal Tube[J] Journal Mechanical Engineering Science, 7(4): 440-448.
    [24] LU D, ZHANG Y, FU X, et al. Experimental investigation on natural convection heat transfer characteristics of C-shape heating rods bundle used in PRHR HX[J]. Annals of Nuclear Energy, 2016, 98: 226-238. doi: 10.1016/j.anucene.2016.08.009
    [25] LIU W, PENG S, JIANG G, et al. Development and assessment of a new rod-bundle CHF correlation for China fuel assemblies[J]. Annals of Nuclear Energy, 2020, 138: 107175. doi: 10.1016/j.anucene.2019.107175
    [26] 杨世铭,陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社,2006: 273-274.
    [27] STEVENS R J A M, LOHSE D, VERZICCO R. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection[J]. Journal of Fluid Mechanics, 2011, 688: 31-43. doi: 10.1017/jfm.2011.354
    [28] MERZARI E, FISCHER P, NINOKATA H. Numerical Simulation of the Flow in a Toroidal Thermosiphon[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan: ASMEDC, 2011: 1549-1560.
    [29] ROMATOSKI R R, HU L W. Fluoride salt coolant properties for nuclear reactor applications: A review[J]. Annals of Nuclear Energy, 2017, 109: 635-647. doi: 10.1016/j.anucene.2017.05.036
    [30] 秋穗正,张大林,王成龙. 熔盐堆[M]. 西安: 西安交通大学出版社,2019: 48.
    [31] LIU L, ZHANG D, LI L, et al. Experimental investigation of flow and convective heat transfer on a high-Prandtl-number fluid through the nuclear reactor pebble bed core[J]. Applied Thermal Engineering, 2018, 145: 48-57. doi: 10.1016/j.applthermaleng.2018.09.017
    [32] OSBORNE D G, INCROPERA F P. Experimental study of mixed convection heat transfer for transitional and turbulent flow between horizontal, parallel plates[J]. International Journal of Heat and Mass Transfer, 1985, 28(7): 1337-1344. doi: 10.1016/0017-9310(85)90164-4
    [33] LI W, FENG Z Z. Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part II: Correlations[J]. International Journal of Heat and Mass Transfer, 2013, 65: 928-935. doi: 10.1016/j.ijheatmasstransfer.2013.07.006
    [34] SHANNON R L, DEPEW C A. Forced Laminar Flow Convection in a Horizontal Tube With Variable Viscosity and Free-Convection Effects[J]. Journal of Heat Transfer, 1969, 91(2): 251-258. doi: 10.1115/1.3580137
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  9
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2024-03-03
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回