高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网格变形法铅铋快堆组件堵流事故模拟

刘政隆 秋涵瑞 王明军 孙浩 田文喜 苏光辉

刘政隆, 秋涵瑞, 王明军, 孙浩, 田文喜, 苏光辉. 基于网格变形法铅铋快堆组件堵流事故模拟[J]. 核动力工程, 2024, 45(3): 95-103. doi: 10.13832/j.jnpe.2024.03.0095
引用本文: 刘政隆, 秋涵瑞, 王明军, 孙浩, 田文喜, 苏光辉. 基于网格变形法铅铋快堆组件堵流事故模拟[J]. 核动力工程, 2024, 45(3): 95-103. doi: 10.13832/j.jnpe.2024.03.0095
Liu Zhenglong, Qiu Hanrui, Wang Mingjun, Sun Hao, Tian Wenxi, Su Guanghui. Simulation of Blockage Accident of LBE-Cooled Fast Reactor Fuel Assembly Based on Mesh Deformation Method[J]. Nuclear Power Engineering, 2024, 45(3): 95-103. doi: 10.13832/j.jnpe.2024.03.0095
Citation: Liu Zhenglong, Qiu Hanrui, Wang Mingjun, Sun Hao, Tian Wenxi, Su Guanghui. Simulation of Blockage Accident of LBE-Cooled Fast Reactor Fuel Assembly Based on Mesh Deformation Method[J]. Nuclear Power Engineering, 2024, 45(3): 95-103. doi: 10.13832/j.jnpe.2024.03.0095

基于网格变形法铅铋快堆组件堵流事故模拟

doi: 10.13832/j.jnpe.2024.03.0095
详细信息
    作者简介:

    刘政隆(2000—),男,硕士研究生,现主要从事反应堆热工水力方面的研究,E-mail: liuzhenglong@stu.xjtu.edu.cn

    通讯作者:

    王明军,E-mail: wangmingjun@mail.xjtu.edu.cn

  • 中图分类号: TL333

Simulation of Blockage Accident of LBE-Cooled Fast Reactor Fuel Assembly Based on Mesh Deformation Method

  • 摘要: 铅铋快堆中,燃料包壳或堆内结构材料会受铅铋合金腐蚀而脱落,堵塞冷却剂通道,引起局部传热恶化,最终导致包壳失效,因此需要分析堵流条件下组件内流动换热特性。绕丝组件结构复杂,非结构化网格划分方法网格量大,对计算资源要求较高。为减少网格量,采用基于径向基函数(RBF)的网格变形法对光棒组件网格进行变形,得到带绕丝组件全六面体网格并开展数值计算。与实验数据相比,全六面体网格计算结果与实验值符合良好,其网格量远少于非结构化网格,能够实现带绕丝组件堵流事故快速计算。开展典型61棒带绕丝组件堵流计算,结果显示柱状堵流流场恢复更快而局部温升更高;板状堵流流场需要更长距离恢复但局部温升小。

     

  • 图  1  控制节点选取

    Figure  1.  Selection of Control Nodes

    图  2  网格截面图

    Figure  2.  Cross Section of Grid

    图  3  热电偶温度对比

    Figure  3.  Comparison of Temperature

    图  4  堵流中心子通道速度温度分布

    Figure  4.  Velocity and Temperature Distribution of Subchannels in Blockage Center

    图  5  61棒组件网格

    Figure  5.  Grid of 61-Pin Rod Assembly

    图  6  组件内速度场分布

    Figure  6.  Velocity Field Distribution in Rod Assembly

    图  7  堵块上下游流线分布

    Figure  7.  Streamline Distribution in Upstream and Downstream of Blockage

    图  8  无量纲横流强度沿轴向变化

    Figure  8.  Dimensionless Crossflow Intensity along Axial Direction

    图  9  组件出口温度分布

    Figure  9.  Temperature Distribution at Outlet

    图  10  包壳平均温度沿轴向变化

    Figure  10.  Clad Average Temperature Along Axial Direction

    表  1  组件几何参数

    Table  1.   Geometry Parameters

    参数 数值
    棒直径D/mm 8.2
    绕丝直径d/mm 2.2
    栅距P/mm 10.49
    螺距H/mm 328
    入口段Lin/mm 328
    加热段Lheated/mm 870
    下载: 导出CSV

    表  2  网格量及最低网格质量对比

    Table  2.   Comparison of Grid Quantity and Quality

    网格结构 网格量/106 最小正交质量
    多面体 3887 1.94×10−4
    六面体 799 1.02×10−2
    下载: 导出CSV

    表  3  压降对比

    Table  3.   Comparison of Pressure Drop

    堵流工况 实验值/kPa 多面体网格 六面体网格
    计算值/kPa 相对偏差/% 计算值/kPa 相对偏差/%
    正常流动 29.21 27.32 −6.47 26.99 −7.60
    堵流位置 33.68 30.72 −8.79 30.78 −8.61
    下载: 导出CSV

    表  4  堵块设置

    Table  4.   Parameters of Blockage

    堵流工况 堵块形状 堵块位置 堵块长度/mm 堵块面积/mm2
    柱状堵流 六边形 z=0.1 m 100 115.72
    板状堵流 1/6扇形 10 3999.74
    下载: 导出CSV
  • [1] PACIO J, DAUBNER M, FELLMOSER F, et al. Heat transfer experiment in a partially (internally) blocked 19-rod bundle with wire spacers cooled by LBE[J]. Nuclear Engineering and Design, 2018, 330: 225-240. doi: 10.1016/j.nucengdes.2018.01.034
    [2] MARINARI R, DI PIAZZA I, TARANTINO M, et al. Blockage fuel pin simulator experiments and simulation[J]. Nuclear Engineering and Design, 2019, 353: 110215. doi: 10.1016/j.nucengdes.2019.110215
    [3] 田文喜,王明军,秋穗正,等. 基于CFD方法的核动力系统热工安全特性研究进展[J]. 原子能科学技术,2019, 53(10): 1968-1982. doi: 10.7538/yzk.2019.youxian.0351
    [4] MERZARI E, POINTER W D, SMITH J G, et al. Numerical simulation of the flow in wire-wrapped pin bundles: Effect of pin-wire contact modeling[J]. Nuclear Engineering and Design, 2012, 253: 374-386. doi: 10.1016/j.nucengdes.2011.09.030
    [5] MERZARI E, FISCHER P, YUAN H, et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly[J]. Nuclear Engineering and Design, 2016, 298: 218-228. doi: 10.1016/j.nucengdes.2015.11.002
    [6] QIU H R, LI J, DONG Z Y, et al. Numerical study on inter-wrapper flow and heat transfer characteristics in liquid metal-cooled fast reactors[J]. Progress in Nuclear Energy, 2023, 155: 104534. doi: 10.1016/j.pnucene.2022.104534
    [7] LI J L, XIAO Y, DING G Q, et al. Numerical analysis of the three-dimensional flow phenomena in a 19-pin wire-wrapped tight lattice bundle[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123319. doi: 10.1016/j.ijheatmasstransfer.2022.123319
    [8] 葛增芳,周涛,柏云清,等. 中国铅基研究实验堆绕丝燃料组件热工水力分析[J]. 原子能科学技术,2015, 49(S1): 167-173.
    [9] 秋涵瑞,李俊,王明军,等. 铅铋堆堆芯燃料组件棒束弯曲工况下流动换热特性研究[J]. 原子能科学技术,2023, 57(8): 1514-1524.
    [10] 王婧婕,朱大欢,卢涛,等. 液态铅铋合金在绕丝燃料棒组件子通道间湍流交混数值模拟[J]. 核动力工程,2021, 42(5): 30-35.
    [11] 刘思超,刘余,田瑞峰,等. 定位绕丝结构对棒束通道热工水力特性影响数值分析[J]. 核动力工程,2023, 44(2): 37-42.
    [12] CHAI X, LIU X J, XIONG J B, et al. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Nuclear Engineering and Design, 2019, 344: 107-121. doi: 10.1016/j.nucengdes.2019.01.019
    [13] 杨云,赵磊,胡文军,等. 单盒钠冷快堆燃料组件堵流事故的CFD分析[J]. 原子能科学技术,2019, 53(12): 2398-2404.
    [14] 李翔宇,王典乐,郭赟. 钠冷快堆绕丝组件入口堵流事故数值模拟[J]. 核科学与工程,2022, 42(2): 468-476.
    [15] 尧俊,张熙司,胡文军,等. 铅铋冷却快堆堵流事故下堵块参数对流动传热的影响[J]. 核技术,2018, 41(2): 76-84.
    [16] GAJAPATHY R, VELUSAMY K, SELVARAJ P, et al. CFD investigation of helical wire-wrapped 7-pin fuel bundle and the challenges in modeling full scale 217 pin bundle[J]. Nuclear Engineering and Design, 2007, 237(24): 2332-2342. doi: 10.1016/j.nucengdes.2007.05.003
    [17] LIN J J, HUANG M, ZHANG S C, et al. CFD investigation for a 7-pin wrapped-wire fuel assembly with different wires[J]. Annals of Nuclear Energy, 2021, 164: 108626. doi: 10.1016/j.anucene.2021.108626
    [18] GOVINDHA R N, VELUSAMY K, SUNDARARAJAN T, et al. Thermal hydraulic effect of porous blockage in fuel subassembly of sodium cooled fast reactor[J]. Annals of Nuclear Energy, 2014, 70: 64-81. doi: 10.1016/j.anucene.2014.01.045
    [19] WANG X A, ZHANG D L, WANG M J, et al. Generating hexahedral mesh for wire-wrapped fuel assembly with RBF mesh deformation method[J]. Frontiers in Energy Research, 2021, 8: 616890. doi: 10.3389/fenrg.2020.616890
    [20] 孙畅,焦守华,柴翔,等. 基于CFD方法的铅铋冷却燃料棒束的热工水力特性分析[J]. 原子能科学技术,2020, 54(8): 1386-1394.
    [21] PACIO J, WETZEL T, DOOLAARD H, et al. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations[J]. Nuclear Engineering and Design, 2017, 312: 327-337. doi: 10.1016/j.nucengdes.2016.08.023
    [22] DE BOER A, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11-14): 784-795.
    [23] 谢亮,徐敏,张斌,等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击,2013, 32(10): 141-145.
    [24] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
    [25] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103.
    [26] NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2007 Edition[M]. Paris: OECD Publishing, 2007: 56-86.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  21
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-10-25
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回