Simulation of Blockage Accident of LBE-Cooled Fast Reactor Fuel Assembly Based on Mesh Deformation Method
-
摘要: 铅铋快堆中,燃料包壳或堆内结构材料会受铅铋合金腐蚀而脱落,堵塞冷却剂通道,引起局部传热恶化,最终导致包壳失效,因此需要分析堵流条件下组件内流动换热特性。绕丝组件结构复杂,非结构化网格划分方法网格量大,对计算资源要求较高。为减少网格量,采用基于径向基函数(RBF)的网格变形法对光棒组件网格进行变形,得到带绕丝组件全六面体网格并开展数值计算。与实验数据相比,全六面体网格计算结果与实验值符合良好,其网格量远少于非结构化网格,能够实现带绕丝组件堵流事故快速计算。开展典型61棒带绕丝组件堵流计算,结果显示柱状堵流流场恢复更快而局部温升更高;板状堵流流场需要更长距离恢复但局部温升小。
-
关键词:
- 铅铋快堆组件 /
- 堵流事故 /
- 计算流体动力学(CFD) /
- 径向基函数(RBF) /
- 网格变形
Abstract: In LBE-cooled fast reactors, the fuel rod claddings or structural materials in the reactor will fall off due to corrosion of LBE. When corroded by LBE, which will block the coolant channel, cause local heat transfer deterioration and eventually lead to cladding failure. Therefore, it is necessary to analyze the flow and heat transfer characteristics in the assembly under the condition of blockage. The structure of wire-wrapped assembly is complex, and the unstructured grid division method has a large grid quantity, which requires high computing resources. In order to reduce the grid quantity, the mesh deformation method based on radial basis function is used to deform the grid of bare rod assembly, and the hexahedral grid with wire-wrapped assembly is obtained and numerical calculation is carried out. The calculated results of the hexahedral grid are in good agreement with the experimental data, and the grid quantity is much less than that of the unstructured grid, which can realize the rapid calculation of the blockage accident of wire-wrapped assemblies. Furthermore, calculations for two different types of blockages were performed in a typical wire-wrapped fuel assembly with 61 pins. The results show that for column-type blockage, the flow field recovers faster but with a higher local temperature rise; for plate-type blockage, the flow field recovers more slowly but the local temperature rise is small. -
表 1 组件几何参数
Table 1. Geometry Parameters
参数 数值 棒直径D/mm 8.2 绕丝直径d/mm 2.2 栅距P/mm 10.49 螺距H/mm 328 入口段Lin/mm 328 加热段Lheated/mm 870 表 2 网格量及最低网格质量对比
Table 2. Comparison of Grid Quantity and Quality
网格结构 网格量/106 最小正交质量 多面体 3887 1.94×10−4 六面体 799 1.02×10−2 表 3 压降对比
Table 3. Comparison of Pressure Drop
堵流工况 实验值/kPa 多面体网格 六面体网格 计算值/kPa 相对偏差/% 计算值/kPa 相对偏差/% 正常流动 29.21 27.32 −6.47 26.99 −7.60 堵流位置 33.68 30.72 −8.79 30.78 −8.61 表 4 堵块设置
Table 4. Parameters of Blockage
堵流工况 堵块形状 堵块位置 堵块长度/mm 堵块面积/mm2 柱状堵流 六边形 z=0.1 m 100 115.72 板状堵流 1/6扇形 10 3999.74 -
[1] PACIO J, DAUBNER M, FELLMOSER F, et al. Heat transfer experiment in a partially (internally) blocked 19-rod bundle with wire spacers cooled by LBE[J]. Nuclear Engineering and Design, 2018, 330: 225-240. doi: 10.1016/j.nucengdes.2018.01.034 [2] MARINARI R, DI PIAZZA I, TARANTINO M, et al. Blockage fuel pin simulator experiments and simulation[J]. Nuclear Engineering and Design, 2019, 353: 110215. doi: 10.1016/j.nucengdes.2019.110215 [3] 田文喜,王明军,秋穗正,等. 基于CFD方法的核动力系统热工安全特性研究进展[J]. 原子能科学技术,2019, 53(10): 1968-1982. doi: 10.7538/yzk.2019.youxian.0351 [4] MERZARI E, POINTER W D, SMITH J G, et al. Numerical simulation of the flow in wire-wrapped pin bundles: Effect of pin-wire contact modeling[J]. Nuclear Engineering and Design, 2012, 253: 374-386. doi: 10.1016/j.nucengdes.2011.09.030 [5] MERZARI E, FISCHER P, YUAN H, et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly[J]. Nuclear Engineering and Design, 2016, 298: 218-228. doi: 10.1016/j.nucengdes.2015.11.002 [6] QIU H R, LI J, DONG Z Y, et al. Numerical study on inter-wrapper flow and heat transfer characteristics in liquid metal-cooled fast reactors[J]. Progress in Nuclear Energy, 2023, 155: 104534. doi: 10.1016/j.pnucene.2022.104534 [7] LI J L, XIAO Y, DING G Q, et al. Numerical analysis of the three-dimensional flow phenomena in a 19-pin wire-wrapped tight lattice bundle[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123319. doi: 10.1016/j.ijheatmasstransfer.2022.123319 [8] 葛增芳,周涛,柏云清,等. 中国铅基研究实验堆绕丝燃料组件热工水力分析[J]. 原子能科学技术,2015, 49(S1): 167-173. [9] 秋涵瑞,李俊,王明军,等. 铅铋堆堆芯燃料组件棒束弯曲工况下流动换热特性研究[J]. 原子能科学技术,2023, 57(8): 1514-1524. [10] 王婧婕,朱大欢,卢涛,等. 液态铅铋合金在绕丝燃料棒组件子通道间湍流交混数值模拟[J]. 核动力工程,2021, 42(5): 30-35. [11] 刘思超,刘余,田瑞峰,等. 定位绕丝结构对棒束通道热工水力特性影响数值分析[J]. 核动力工程,2023, 44(2): 37-42. [12] CHAI X, LIU X J, XIONG J B, et al. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Nuclear Engineering and Design, 2019, 344: 107-121. doi: 10.1016/j.nucengdes.2019.01.019 [13] 杨云,赵磊,胡文军,等. 单盒钠冷快堆燃料组件堵流事故的CFD分析[J]. 原子能科学技术,2019, 53(12): 2398-2404. [14] 李翔宇,王典乐,郭赟. 钠冷快堆绕丝组件入口堵流事故数值模拟[J]. 核科学与工程,2022, 42(2): 468-476. [15] 尧俊,张熙司,胡文军,等. 铅铋冷却快堆堵流事故下堵块参数对流动传热的影响[J]. 核技术,2018, 41(2): 76-84. [16] GAJAPATHY R, VELUSAMY K, SELVARAJ P, et al. CFD investigation of helical wire-wrapped 7-pin fuel bundle and the challenges in modeling full scale 217 pin bundle[J]. Nuclear Engineering and Design, 2007, 237(24): 2332-2342. doi: 10.1016/j.nucengdes.2007.05.003 [17] LIN J J, HUANG M, ZHANG S C, et al. CFD investigation for a 7-pin wrapped-wire fuel assembly with different wires[J]. Annals of Nuclear Energy, 2021, 164: 108626. doi: 10.1016/j.anucene.2021.108626 [18] GOVINDHA R N, VELUSAMY K, SUNDARARAJAN T, et al. Thermal hydraulic effect of porous blockage in fuel subassembly of sodium cooled fast reactor[J]. Annals of Nuclear Energy, 2014, 70: 64-81. doi: 10.1016/j.anucene.2014.01.045 [19] WANG X A, ZHANG D L, WANG M J, et al. Generating hexahedral mesh for wire-wrapped fuel assembly with RBF mesh deformation method[J]. Frontiers in Energy Research, 2021, 8: 616890. doi: 10.3389/fenrg.2020.616890 [20] 孙畅,焦守华,柴翔,等. 基于CFD方法的铅铋冷却燃料棒束的热工水力特性分析[J]. 原子能科学技术,2020, 54(8): 1386-1394. [21] PACIO J, WETZEL T, DOOLAARD H, et al. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations[J]. Nuclear Engineering and Design, 2017, 312: 327-337. doi: 10.1016/j.nucengdes.2016.08.023 [22] DE BOER A, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11-14): 784-795. [23] 谢亮,徐敏,张斌,等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击,2013, 32(10): 141-145. [24] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006 [25] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103. [26] NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2007 Edition[M]. Paris: OECD Publishing, 2007: 56-86.