高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带格架棒束子通道单相湍流交混轴向演化特性实验研究

刘莎莎 马在勇 张锐 孙皖 张卢腾 朱隆祥 潘良明

刘莎莎, 马在勇, 张锐, 孙皖, 张卢腾, 朱隆祥, 潘良明. 带格架棒束子通道单相湍流交混轴向演化特性实验研究[J]. 核动力工程, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104
引用本文: 刘莎莎, 马在勇, 张锐, 孙皖, 张卢腾, 朱隆祥, 潘良明. 带格架棒束子通道单相湍流交混轴向演化特性实验研究[J]. 核动力工程, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104
Liu Shasha, Ma Zaiyong, Zhang Rui, Sun Wan, Zhang Luteng, Zhu Longxiang, Pan Liangming. Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids[J]. Nuclear Power Engineering, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104
Citation: Liu Shasha, Ma Zaiyong, Zhang Rui, Sun Wan, Zhang Luteng, Zhu Longxiang, Pan Liangming. Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids[J]. Nuclear Power Engineering, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104

带格架棒束子通道单相湍流交混轴向演化特性实验研究

doi: 10.13832/j.jnpe.2024.03.0104
基金项目: 国家重点研发计划(2018YFB1900400);国家自然科学基金联合基金(U21B2059)
详细信息
    作者简介:

    刘莎莎(1999—),女,硕士研究生,现主要从事动力工程及工程热物理方面研究, E-mail: 202110021061t@stu.cqu.edu.cn

    通讯作者:

    马在勇,E-mail: mazy@cqu.edu.cn

  • 中图分类号: TL334

Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids

  • 摘要: 子通道间的湍流交混是影响堆芯内热工参数准确计算的关键因素,对于提升反应堆安全分析的精度具有重要意义。对于带格架棒束子通道间湍流交混,现有研究常采用热扩散系数研究其平均效应,缺乏对其轴向演化特性的详细分析。本文基于示踪剂分析方法,对带格架与不带格架的双子通道单相湍流交混的轴向演化特性开展了实验研究。实验结果表明格架对于单相湍流交混具有显著增强作用。相对于无格架工况,格架处由于格架强扰动和横流作用湍流交混增强作用最强,格架近下游由于反向横流作用增强作用最弱,格架远下游略强于格架上游,且增强作用可以持续较长距离。

     

  • 图  1  实验系统示意图

    Figure  1.  Schematic Diagram of the Experimental System

    图  2  湍流交混段及轴向测点布置示意图  mm

    Figure  2.  Schematic Diagram of Turbulent Mixing Section and Axial Measuring Point Arrangement

    图  3  MVSG设计图

    Figure  3.  Schematic Diagrams of MVSG

    图  4  无量纲湍流交混率轴向演化特性

    Figure  4.  Axial Evolution Characteristics of Dimensionless Turbulent Mixing Rate

    图  5  湍流交混系数轴向演化特性

    Figure  5.  Axial Evolution Characteristics of Turbulent Mixing Coefficient

    图  6  无量纲湍流交混率增强倍数随雷诺数变化情况

    Figure  6.  Variation of the Enhancement Ratio of Dimensionless Turbulent Mixing Rate with Reynolds Number

    图  7  湍流交混系数增强倍数随雷诺数的变化情况

    Figure  7.  Variation of the Enhancement Ratio of Turbulent Mixing Coefficient with Reynolds Number

    表  1  单相湍流交混实验工况表

    Table  1.   Single-phase Turbulent Mixing Experimental Conditions

    工况序号 液相流速jl/(m·s−1) 雷诺数(Re
    1 0.45 3004
    2 0.55 3668
    3 0.65 4336
    4 0.80 5335
    5 1.00 6669
    6 1.50 10003
    7 2.25 15005
    8 3.00 20007
    下载: 导出CSV
  • [1] 于平安,朱瑞安,喻真烷,等. 核反应堆热工分析[M]. 第三版. 上海: 上海交通大学出版社,2002: 14-15.
    [2] ROGERS J T, TODREAS N E. Coolant interchannel mixing in reactor fuel rod bundles: single-phase coolants: NSA-23-021488[R]. Toronto: Canadian General Electric Co. , Ltd. , 1969.
    [3] 刘余,杜思佳,李仲春. 子通道分析中的湍流交混研究综述[J]. 核动力工程,2017, 38(3): 132-136. doi: 10.13832/j.jnpe.2017.03.0132
    [4] BAGLIETTO E, NINOKATA H. Turbulence models evaluation for heat transfer simulation in tight lattice fuel bundles[C]//Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Korea: Korea Nuclear Society, 2003.
    [5] CHANG D, TAVOULARIS S. Unsteady numerical simulations of turbulence and coherent structures in axial flow near a narrow gap[J]. Journal of Fluids Engineering, 2005, 127(3): 458-466. doi: 10.1115/1.1900140
    [6] CHANG D, TAVOULARIS S. Numerical simulation of turbulent flow in a 37-rod bundle[J]. Nuclear Engineering and Design, 2007, 237(6): 575-590. doi: 10.1016/j.nucengdes.2006.08.001
    [7] NINOKATA H, MERZARI E, KHAKIM A. Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration[J]. Nuclear Engineering and Design, 2009, 239(5): 855-866. doi: 10.1016/j.nucengdes.2008.10.030
    [8] GALBRAITH K P. Single phase turbulent mixing between adjacent channels in rod bundles[D]. Corvallis: Oregon State University, 1971.
    [9] SADATOMI M, KAWAHARA A, SATO Y. Prediction of the single-phase turbulent mixing rate between two parallel subchannels using a subchannel geometry factor[J]. Nuclear Engineering and Design, 1996, 162(2-3): 245-256. doi: 10.1016/0029-5493(95)01129-3
    [10] SADATOMI M, KAWAHARA A, KANO K, et al. Single- and two-phase turbulent mixing rate between adjacent subchannels in a vertical 2×3 rod array channel[J]. International Journal of Multiphase Flow, 2004, 30(5): 481-498. doi: 10.1016/j.ijmultiphaseflow.2004.03.001
    [11] JEONG H Y, HA K S, KWON Y M, et al. A dominant geometrical parameter affecting the turbulent mixing rate in rod bundles[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 908-918. doi: 10.1016/j.ijheatmasstransfer.2006.08.023
    [12] 王正杰,贾斗南,喻真烷. 模拟元件棒束内子通道间单相湍流交混的实验研究[J]. 核科学与工程,1983, 3(2): 107-114,106.
    [13] 程诚,叶停朴,卢冬华,等. 棒束及格架布置对燃料组件搅混特性影响的实验研究[J]. 核动力工程,2022, 43(2): 22-27. doi: 10.13832/j.jnpe.2022.02.0022
    [14] CARLUCCI L N, HAMMOUDA N, ROWE D S. Two-phase turbulent mixing and buoyancy drift in rod bundles[J]. Nuclear Engineering and Design, 2004, 227(1): 65-84. doi: 10.1016/j.nucengdes.2003.08.003
    [15] 韩斌,杨保文,张汇,等. 定位格架压降关系式及CFD数值模拟研究[J]. 核动力工程,2017, 38(2): 169-174. doi: 10.13832/j.jnpe.2017.02.0169
    [16] YLÖNEN A, BISSELS W M, PRASSER H M. Single-phase cross-mixing measurements in a 4×4 rod bundle[J]. Nuclear Engineering and Design, 2011, 241(7): 2484-2493. doi: 10.1016/j.nucengdes.2011.04.014
    [17] CHA J H, CHO M H. A study on coolant mixing in multirod bundle subchannels[J]. Nuclear Engineering and Technology, 1970, 2(1): 19-25.
    [18] JU H R, WANG M J, CHEN C, et al. Numerical study on the turbulent mixing in channel with Large Eddy Simulation (LES) using spectral element method[J]. Nuclear Engineering and Design, 2019, 348: 169-176. doi: 10.1016/j.nucengdes.2019.04.017
    [19] NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5×5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
    [20] LIU C C, FERNG Y M, SHIH C K. CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly[J]. Applied Thermal Engineering, 2012, 40: 389-396. doi: 10.1016/j.applthermaleng.2012.02.027
    [21] WANG Y J, WANG M J, JU H R, et al. CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR[J]. Nuclear Engineering and Technology, 2020, 52(7): 1386-1395. doi: 10.1016/j.net.2019.12.012
    [22] BIEDER U, FALK F, FAUCHET G. LES analysis of the flow in a simplified PWR assembly with mixing grid[J]. Progress in Nuclear Energy, 2014, 75: 15-24. doi: 10.1016/j.pnucene.2014.03.014
    [23] SMITH III L D, CONNER M E, LIU B, et al. Benchmarking computational fluid dynamics for application to PWR fuel[C]//10th International Conference on Nuclear Engineering. Arlington: ASME, 2002: 823-830.
    [24] XIONG J B, QU W H, ZHANG T F, et al. Experimental investigation on split-mixing-vane forced mixing in pressurized water reactor fuel assembly[J]. Annals of Nuclear Energy, 2020, 143: 107450. doi: 10.1016/j.anucene.2020.107450
    [25] 曹念,郎雪梅,卢冬华,等. 燃料组件单相交混系数试验研究[J]. 核动力工程,2009, 30(5): 22-25,47.
    [26] 张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  19
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-30
  • 修回日期:  2023-07-23
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回